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1. ABSTRACT

Any local microphysics formula that accurately com-
putes microphysical processes at a point in space will
still yield inaccurate results if it is driven by inaccurate
distributions of moisture and temperature. Inaccuracy
occurs when microphysical processes are non-linear,
and the variability in moisture and temperature within
a grid box is large.

To avoid this inaccuracy, local microphysical formu-
las may be upscaled to an extensive grid box. Spa-
tial variability within a grid box may be represented by
a probability density function (PDF). Then the upscal-
ing may be done by analytically integrating the local
microphysical formula over the PDF. In this paper, we
analytically upscale the local microphysical formulas of
Khairoutdinov and Kogan, which collectively constitute
a double-moment scheme for drizzle in marine stratocu-
mulus. Then we implement the upscaled formulas inter-
actively in a single-column model and test the model for
a drizzling marine stratocumulus case, namely research
flight two (RF02) of the DYCOMS-II field experiment.

Compared to the local microphysics solution, the up-
scaled microphysics exhibits increased autoconversion
of cloud droplets to raindrops and increased accretion
of cloud droplets onto raindrops (i.e. increased collec-
tion). The combined result is a significant increase in
rainwater at the ocean surface, in closer agreement to
a benchmark large-eddy simulation.

This conference paper provides a shortened ver-
sion of Larson and Griffin (2010) and Griffin and Larson
(2010). Please refer there for more details.

2. INTRODUCTION

Microphysical processes are often local. Consider,
for instance, autoconversion, the process whereby
cloud droplets grow to drizzle-drop size. The autocon-
version rate at a point in space depends on the popu-
lation of cloud droplets in the immediate vicinity, not on
cloud droplets at distant locations.

However, large-scale atmospheric numerical mod-
els of atmospheric flows that compute such microphys-
ical processes typically discretize the domain into large
grid boxes and compute fields, e.g. moisture and tem-
perature, only at the grid box scale or larger. Such mod-
els require not local microphysical rates, but rather aver-
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age rates over a grid box that can be used to increment
the grid-box-scale moisture and temperature fields.

When we desire a grid-box-average rate, substitut-
ing a local microphysical rate is often inaccurate. This
is especially true when the microphysical processes are
both nonlinear and small in scale.

The non-linearity implies that, for a process rate rep-
resented by a nonlinear function f that depends on vari-
able x, usually

〈f(x)〉 �= f(〈x〉), (1)

where the angled brackets denote a grid-box average
(Pincus and Klein 2000). In other words, the grid box
average (the left-hand side) does not equal the result
of feeding the average of x into the local formula f
(the right-hand side), except by coincidence. For ex-
ample, the grid-box-average cloud water is insufficient
information to predict grid-box-average autoconversion
rate. One reason is that autoconversion occurs dispro-
portionately in the part of the grid box with more cloud
water.

The small-scale nature of such processes allows
variability to occur on the subgrid scale. When the sub-
grid variability is large, the microphysical rates need to
be averaged in a way that accounts for this variability.
Stated differently, local microphysical formulas, even if
perfectly accurate, need to be “upscaled” to the grid box
scale.

To do so, a model may estimate, for variables like
x, the probability density function (PDF) of spatial vari-
ability within a grid box, P (x). Then the model may in-
tegrate over the PDF to produce a grid-box average of
the microphysical process rate:

〈f(x)〉 =

�
f(x)P (x)dx. (2)

In many cases, the PDF provides sufficient information
to account for subgrid variability. Given the within-grid-
box PDF, a model “knows” how much cloud water is
present in the moistest part of a cloudy grid box and
therefore “knows” how to weight an autoconversion for-
mula in order to account for the moistest part.

If the PDF can be accurately predicted, then,
in many cases, the problem of parameterizing sub-
grid variability reduces to the problem of quadrature,
namely, the integration of Equation (2). The integral
can be evaluated via Monte Carlo integration (Pincus
et al. 2003; Räisänen et al. 2004; Larson 2007). That
is, sample points can be drawn from the PDF, P (x), and
fed into the microphysical formula f(x). The resulting
points can be averaged to yield an estimate of 〈f(x)〉.
This technique is flexible and is applicable when f(x)



is a complex numerical subroutine. However, the tech-
nique also introduces statistical noise into the averages
due to the necessarily limited sample size (Räisänen
and Barker 2004; Räisänen et al. 2005; Larson et al.
2005; Pincus et al. 2006).

Rather than Monte Carlo integration, this paper in-
stead integrates Equation (2) analytically. This yields
exact integrals, and in particular avoids the noise asso-
ciated with Monte Carlo integration. Analytic integration
is possible only because we use microphysical formu-
las f(x) and PDFs P (x) that are simple. Specifically,
the microphysical formulas are those of Khairoutdinov
and Kogan (2000) (hereafter denoted KK) for drizzling
marine stratocumulus clouds. KK parameterize all mi-
crophysical sources and sinks in terms of power laws,
which greatly simplifies the mathematics. Furthermore,
our chosen PDF has a simple functional form. It is a
mixture of two multivariate normals, in other words, a
sum of two joint Gaussians. (For the precipitation vari-
ables, the normal mixture form is transformed from a
lognormal form.) Each univariate marginal PDF is a nor-
mal mixture. (A univariate marginal PDF is the single-
variable PDF that remains when all other variates of the
full multivariate PDF are integrated over the entire do-
main.) This combination of simple functional forms for
f(x) and P (x) yields analytically tractable integrals.

This analytic approach was outlined and tested by
Larson and Griffin (2006). Further results using this
method were presented in Wyant et al. (2007). A re-
lated analytic approach has been used by Cheng and
Xu (2009) for a single-moment microphysics scheme
and a normal mixture PDF for rain.

In order to assess the effects of upscaling, we per-
form two SCM simulations. The two SCMs are iden-
tical, except that one uses local KK microphysics and
the other upscales the same local microphysics. The
two SCM simulations are then compared to a three-
dimensional large-eddy simulation (LES). The LES
model simulates the RF02 case using the local KK mi-
crophysics. Because the LES model uses an identical
case configuration and microphysics as the SCM, the
LES serves as a benchmark against which the SCM’s
representation of microphysics can be measured. We
note that this paper does not assess the accuracy of
the local KK microphysics; rather it is an assessment of
the SCM’s ability to account for subgrid variability and
thereby accurately drive the local microphysical pro-
cesses.

The remainder of this paper is organized as fol-
lows. Section 3. provides an overview of the local KK
prognostic equations. Section 4. presents the func-
tional form of the subgrid PDF. Section 5. compares re-
sults from models with upscaled and local microphysics.
Section 6. summarizes our results.

3. PROGNOSTIC EQUATIONS FOR DRIZZLE

The KK formulas parameterize drizzle in marine
stratocumulus clouds. The KK scheme is double mo-

ment in both rain water and cloud water. (This paper
will use the word “rain” synonymously with “drizzle” al-
though the KK scheme is designed for small raindrops,
that is, drizzle drops.) That is, the KK scheme prog-
noses both number concentrations and mixing ratios for
both rain and cloud water. In our simulations, we prog-
nose number concentration and mixing ratio of rain, but
we diagnose cloud water mixing ratio, and we prescribe
the number concentration of cloud droplets.

The prognostic equations that we use are based on
those of Khairoutdinov and Kogan (2000). We use prog-
nostic equations for grid-box-averaged rain water mix-
ing ratio, rr (Khairoutdinov and Kogan 2000, Eq. 8):
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(3)

and rain drop concentration per mass of air, Nr

∂ 〈Nr〉
∂t

= − 〈w〉 ∂ 〈Nr〉
∂z

+
∂ 〈VNr 〉 〈Nr〉

∂z

+

��
∂Nr

∂t

�
evap

�
+

��
∂Nr

∂t

�
auto

�

+
∂

∂z
〈K〉 ∂ 〈Nr〉

∂z
,

(4)

where w is the vertical wind component in m s−1, Vrr

and VNr are the sedimentation velocities (defined posi-
tive downward) in m s−1 of rr and Nr, respectively, and
K is the eddy diffusion coefficient in m2 s−1. The sub-
script evap denotes condensation/evaporation; auto de-
notes autoconversion, and accr denotes accretion (or
collection) of cloud droplets by rain drops.

These equations are supplemented by prognostic
equations for total moisture, heat content, and vari-
ous higher-order moments such as turbulence-related
quantities.

4. THE PDF FUNCTIONAL FORM

The subgrid-scale variability in all relevant fields is
represented by a single, multi-variate PDF. The PDF
that we use is predicted by the Cloud Layers Unified
By Binormals (CLUBB) SCM (Golaz et al. 2002a,b;
Larson and Golaz 2005). CLUBB assumes that the
PDF is a weighted mixture of two multi-variate nor-
mal/lognormal distributions. In Golaz et al. (2002a), the
PDF, P (w, θl, rt), was a function of only liquid water po-
tential temperature, θl, total water mixing ratio, rt, and
vertical velocity, w. Here, the PDF is extended to in-
clude rr, Nr, and cloud droplet concentration per mass
of air, Nc. It can be written P (w, θl, rt, rr, Nr, Nc).

The marginal distribution of rc is diagnosed by trun-
cating the distribution of the extended liquid water, s, at



saturation and adding a delta function at rc = 0 in or-
der to represent clear air. The marginal distributions of
rr, Nr, and Nc are all assumed to be single lognormal
distributions. A lognormal shape is suitable for hydrom-
eteor species because it tends to an unskewed shape
when its mean is large and a positively skewed shape
when its mean is small. Furthermore, a lognormal dis-
tribution is positive definite. This property is unimpor-
tant for variables such as total water mixing ratio (vapor
plus liquid), which are non-negative but whose left tail
falls off well above zero mixing ratio. However, variables
such as drizzle mixing ratio often cluster near zero but
can never be negative. For such variables, it is impor-
tant that the PDF allow strong postive skewness and yet
ensure that negative values never occur. Additionally, a
single lognormal distribution has the virtue of simplic-
ity. The form of the PDF for a single variable, x, that is
distributed lognormally is:

P (x) =
�
(2π)1/2 σx

	−1

exp


− (ln x − μ)2

2σ2

�
, (5)

where μ and σ2 are the mean and the variance, respect-
fully, of lnx, which is normally distributed.

In order to compute grid box averages that account
for subgrid variability, we need to integrate local micro-
physical formulas over the PDF, as in Equation (2). To
do so, it proves mathematically convenient to transform
lognormal PDFs to normal ones.

Once the lognormally-distributed variables (rr,
Nr, and Nc) have been transformed into normally-
distributed variables, the PDF may be written as a
weighted mixture of two 6-variate normal distributions:

P (w, θl, rt, rrn, Nrn, Ncn)

= (a)P(1) (w, θl, rt, rrn, Nrn, Ncn)

+ (1 − a) P(2) (w, θl, rt, rrn, Nrn, Ncn) ,

(6)

where a is the mixture fraction, which is the relative
weight of the first normal distribution, and where:
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Here x = (w, θl, rt, rrn, Nrn, Ncn) is a column vector
of variables, and μ(i) and Σ(i) denote the mean vector
and covariance matrix, respectively, of the ith normal
of those variables. An important note is that each sub-
set of x is distributed according to a multivariate nor-
mal. The means and variances of rrn, Nrn, and Ncn

are equal for each normal component. For example, in
the case of rrn, μrrn(1) = μrrn(2) and σ2

rrn(1)
= σ2

rrn(2)
.

Hence, for these variates, the two normal components
overlap exactly, thereby reducing to a single normal.
When transformed back, these variates are distributed
according to a single lognormal.

5. MODEL RESULTS

In this section, we present simulations of the
DYCOMS-II RF02 marine Sc case using 3 models: the
SCM with upscaled microphysics, the SCM with local
microphysics, and the SAM benchmark LES. The LES
uses the local KK microphysics, but it includes informa-
tion on horizontal variability of the microphysical fields
because it solves the governing equations on a fine-
scale three-dimensional mesh. This allows the LES to
drive the local microphysical process rates using the
spatially varying values of microphysical fields such as
Nc and rr. The local microphysics contains information
about the horizontal variability of rt, θl, and w, but not
the microphysical fields such as rr. The upscaled mi-
crophysics represents this microphysical variability but
in the approximate form of a PDF whose functional
form is assumed. The goal of this section is to assess
whether or not the upscaled microphysics matches the
rain fields simulated by the LES better than the local
microphysics.

5.1 Turbulence, thermodynamic, and cloud
fields

Before we turn to the rain fields, we first assess
whether or not other important fields produced by the
SCM simulations match the LES, such as those related
to cloud water. Such fields influence rain production,
and if they are not simulated accurately, they can lead
to inaccurate prediction of rain mixing ratio even if ac-
curate local or upscaled rain processes are used. (Pro-
duction of rain is defined to consist of two processes:
autoconversion of (small) cloud droplets to (large) rain-
drops, and accretion (i.e. collection) of cloud droplets
onto raindrops.)

The profiles of cloud water, 〈rc〉, and cloud fraction
are similar for all three models (see Figure 1). Cloud
water 〈rc〉 has the same peak magnitude for all three
models, and all three clouds are overcast with about
the same thickness. However, both cloud top and cloud
base are located slightly lower in the SCM simulations
than in the LES. Presumably, the reason is that the SCM
simulations do not entrain as much above-cloud air as
the LES.

Not only do all three SCM simulations produce sim-
ilar profiles of mean cloud water, but they also produce
similar profiles of horizontal variance in cloud water mix-

ing ratio,
�
r
′2
c

�
(see Figure 1). Variability in rc, in addi-

tion to its horizontal average, influences rain because
rain production is a nonlinear process.

The similarity of the cloud water fields among the
models suggests that the differences in rain water fields
discussed below are not related to differences in the
cloud water itself but rather to the neglect or inclusion
of subgrid variability within the microphysics.
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Figure 1: Profiles of 〈rc〉 (top), cloud fraction (center),

and
�
r
′2
c

�
(bottom) averaged over hours 4 to 6. Shown

are profiles from horizontally averaged SAM LES re-
sults (thick solid), the SCM with upscaled microphysics
(thin dashes) and the SCM with local microphysics (thin
dotted). The cloud water profiles are similar among all
three simulations. This allows for direct comparison of
the rain found in all three simulations because cloud wa-
ter is an influential factor in rain production.

5.2 Rain

Differences between SAM, the SCM with upscaled
microphysics, and the SCM with local microphysics first
appear in the rain-related fields. The upscaled micro-
physics produces more rain at all altitudes than does the
local microphysics. For instance, depending on altitude,
the upscaled 〈rr〉 is a factor of 1.1 to 3.5 times larger
than the local 〈rr〉. Furthermore, the upscaled raindrop
number concentration, 〈Nr〉, and the precipitation flux
are larger at all altitudes than their local counterparts
(Figure 2). The upscaled 〈rr〉, 〈Nr〉, and precipitation
flux better match the LES near cloud top and especially
near the ocean surface (see Figure 2).

Near the ocean surface, the local 〈rr〉, 〈Nr〉, and
precipitation flux are all an order of magnitude less than
SAM LES. The upscaled SCM still underestimates SAM
LES, but at later times lies within the range of the LES
that participated in the GCSS intercomparison.

The time series of liquid water path and surface pre-
cipitation flux are presented in Figure 3. The liquid wa-
ter path of all three models is similar, indicating that the
microphysics of all three models experience similar en-
vironments. Nevertheless, the local microphysics un-
derestimates the surface precipitation flux, whereas the
upscaled microphysics mostly lies within the range of
LES in the GCSS intercomparison. The fact that LWP
is similar among the models but the surface precipita-
tion differs suggests that rain does not strongly deplete
liquid water in these simulations. As an aside, we also
note that the time evolution of the precipitation fields is
smooth, as desired.

6. CONCLUSIONS

This paper upscales a local microphysical scheme
for drizzle marine stratocumulus (Khairoutdinov and Ko-
gan 2000) to a larger, grid-box scale. The upscaling is
achieved by analytically integrating the Khairoutdinov-
Kogan formulas over a multi-variate PDF that repre-
sents subgrid variability. The main results are grid-
box averaged formulas for drizzle sedimentation veloc-
ity, autoconversion rate, accretion rate, and condensa-
tion/evaporation rate (Larson and Griffin 2010).

To obtain these formulas, we use PDFs that are
assumed mixtures of normal distributions or assumed
lognormal distributions, and we use local microphysi-
cal formulas that are in the form of power laws. This
allows analytic integration in the case of 2- and even
3-variable power laws with positive but arbitrary expo-
nents. The formulas are fairly general. They apply to
any power laws. In principle, such power laws could
be used to approximate any local process, not merely
liquid-phase microphysics, but also ice- or mixed-phase
microphysics, or other processes.

Analytic integration is a method of upscaling that of-
fers an alternative to Monte Carlo integration (e.g. Lar-
son et al. 2005). Both methods have strengths and
weaknesses. Analytic integration is accurate, but it re-
quires that complex processes, such as microphysics,
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Figure 3: Time series of liquid water path (LWP) (top) and surface precipitation flux (bottom) over the entire course
of the simulation. The figure shows results from SAM LES (thick solid lines), the SCM with upscaled microphysics
(thin dashed lines), and the SCM with local microphysics (thin dotted lines). All three models produce similar LWP,
once again suggesting that the forcing of rain production is similar in all three models. Nevertheless, although both
SCM simulations underestimate surface precipitation, the upscaled version produces considerably more than does
its local counterpart.
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Figure 2: Profiles of 〈rr〉 (top), 〈Nr〉 (center), and pre-
cipitation flux (bottom) averaged over hours 4 to 6. The
thicker, solid lines represent the results of the horizon-
tally averaged SAM LES; the thin, dashed lines, the
SCM with upscaled microphysics; and the thin, dotted
lines, the SCM with local microphysics. The upscaled
microphysics produces more rain than does the local
microphysics. Furthermore, the upscaled microphysics
usually agrees more closely with SAM than does the
local microphysics.

be represented by simple formulas, such as power laws.
Monte Carlo integration introduces sampling noise, but
is applicable to a broad range of diagnostic parameteri-
zation formulas, including ones in the form of numerical
subroutines.

In this paper, we evaluate the analytic upscaling
method. To do so, we implement upscaled microphysics
into the single-column model (SCM) of Golaz et al.
(2002a). Then we simulate a drizzling marine stratocu-
mulus cloud that was observed during Research Flight
2 (RF02) of the DYCOMS-II field experiment (Stevens
et al. 2003). We simulate the RF02 case using 1) the
SCM with upscaled microphysics; 2) the same SCM ex-
cept that subgrid variability in clouds does not drive mi-
crophysics, and subgrid variability is neglected in the
hydrometeor fields (but not the thermodynamic or tur-
bulence fields); 3) and a three-dimensional benchmark
large-eddy simulation (LES) model. The three simu-
lations are configured identically insofar as possible,
thereby allowing direct comparison among them. Fur-
thermore, all three simulations produce similar fields of
cloud water mixing ratio (rc), horizontal variance of rc,
and humidity below cloud. Therefore, the cloud and hu-
midity fields in all three simulations drive the drizzle pro-
cesses similarly.

The SCM with upscaled microphysics produces
nearly four times as much precipitation flux at the ocean
surface as does the SCM with local microphysics. The
profile of upscaled precipitation flux lies mostly within
the range simulated by LES models participating in the
RF02 GCSS intercomparison, but the local precipita-
tion flux does not (Figure 2). Relatedly, upscaling the
microphysics increases 〈rr〉 by about 20% within cloud
and about 75% at the surface. Differences in rain of
this magnitude can also arise from changes in the for-
mulation of local microphysical formulas (e.g., Cotton
and Anthes 1989). Nevertheless, our results demon-
strate that accounting for subgrid variability has a non-
negligible effect in the RF02 case.

Why does accounting for subgrid variability increase
rain? The upscaled rain is enhanced by increased au-
toconversion and accretion, which outweighs the dimin-
ishment of rain by enhanced evaporation. Within cloud,
accounting for subgrid variability increases the autocon-
version rate by an average of 20%, increases the ac-
cretion rate by an average of 13%, and increases the
evaporation rate by an average of 10%.
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