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1. Introduction 

 Clouds, which cover about 70% of the earth's surface 

[Rossow and Schiffer, 1999], play a critical role in the 

atmosphere through various interaction processes such 

as latent heat release, radiation and water circulation. In 

particular, the recent attention of the climate research 

community to cloud perturbation by anthropogenic 

aerosols demands extensive simulations of detailed 

cloud microphysics. In such simulations, bin-type cloud 

models have been used to study the detailed 

modification of the size distribution of cloud droplets 

and aerosol particles [e.g., Khain et al., 2005; Lynn et 

al., 2005]. The satellite-derived signature of 

aerosol-cloud interaction with a significant reduction of 

the effective droplet radius has also been successfully 

simulated by these bin-type models [Suzuki et al., 2006; 

Iguchi et al., 2008]. 

 The bin-type model, however, takes a large amount of 

computing time and is difficult to be used for 

simulation of large-scale areas and/or for many runs in 

sensitivity studies. So far the model has, therefore, been 

used only for idealized and meso-scale regional case 

studies [e.g., Khain and Sednev, 1996; Takahashi and 

Kawano, 1998; Lynn, et al., 2005; Iguchi et al., 2008]. 

 Table 1 shows an example of CPU time taken by 

microphysical processes in the bin model of Suzuki et 

al. [2006]. The table indicates that more than 98% of 

the total CPU time is used by the condensation and the 

collision-coagulation processes, although the CPU time 

are different depending on the algorithms adopted by 

each bin-type model. In order to increase the 

computational efficiency, Bott [1998, 2000] proposed a 

flux method to reduce the numerical diffusion in the 

collision-coagulation processes by using a mass density 

distribution function, instead of the number density 

distribution function and using an accurate 

interpolation to solve the stochastic collision equation. 

Suzuki [2004] proposed a base function method to 

reduce the numerical diffusion by expanding the size 

distribution by a series of orthogonal functions. In spite 

of these improvements, the computational cost of 

bin-type models is still high. 

 In this paper, we propose a stochastic size- integration 

method for the collision-coagulation process of a bin 

type cloud model. And the purpose of this paper is to 

develop a numerically efficient method to approximate 

the traditional bin-method which is widely used by 

many researchers, in order to reduce the computation 

cost. We present the model description in section 2, 

calculation results in sections 3, 4, and 5 and the 

discussion in section 6. 

2. Model description 

 The collision-coagulation growth of hydro- meteors in 

cloud is calculated by solving the stochastic collection 



P1.50 

 2 

equation (SCE) [e.g., Pruppacher and Klett, 1997; 

Khain et al., 2000]: 

€ 
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∂t

= 2 f ( ʹ′ m ) f (m − ʹ′ m )K( ʹ′ m ,m − ʹ′ m )d ʹ′ m 
0

m / 2

∫

− f (m) f ( ʹ′ ʹ′ m )K(m, ʹ′ ʹ′ m )d ʹ′ ʹ′ m 
0

∞

∫

  (1) 

where m is the mass of a hydrometeor particle, f(m) is 

the number size distribution function (SDF) (number 

size concentration) and K(m’,m) is the collection kernel 

function determining the rate at which a particle of 

mass m’ is collected by a particle of mass m. In order to 

solve (1), we adopt a logarithmically equidistant mass 

grid system following Bott [1998]. Following Berry 

[1967], a mass density function, g(η), is introduced by: 

         (2) 

Substituting g(η) into (1), the SCE of the mass density 

function is written as: 

€ 
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∫

,          (3) 

where ηc=ln(mc); mc = m-m’; η1=exp(η)/2.  

Collision of a particle at a grid point i (i-th 

bin), whose mass is mi, with a particle at a grid point j 

(j-th bin), whose mass is mj, yields a change in the mass 

density functions at the i-th and j-th bins, gi and gj. It 

also produces a new particle with mass m’=mi+mj. This 

process is calculated as follows: 

     (4a) 

   (4b) 

, (i,j=1,2,…,Nbin)   (4c) 

where Δgi and Δgj are the masses lost from i-th and j-th 

bins by collision, respectively, and gi(i,j) and gj(i,j) are 

values of the mass density function after the collision at 

the i-th and j-th bin, respectively. g’(i,j) represents the 

total mass increase of the particle system identified as 

the new particle m' after the collision. Δη is the grid 

spacing of the logarithmically equidistant mass grid 

system, Δt is the time interval for numerical integration 

and Nbin is the number of bins. Supposing that the new 

particle mass is in a k-th bin, i.e. mk<m’<mk+1, g’(i,j) is 

decomposed into two contributions for k-th and k+1-th 

bins as in the scheme proposed by Bott [2000].  

 The traditional bin method evaluates all the collision 

combinations, NbinC2, to solve (3) as follows: 

	
 	
 	
 	
 	
 	
 	
 (5) 

 On the other hand, in this study, we approximate (5) 

using a Monte-Carlo integration (henceforth 

abbreviated as MI) algorithm. This method does not 

calculate all combinations of bins, instead only some 

combinations are selected by uniform random numbers: 

	
 (6) 

where M is the number of selected bin combinations 

and w is a weighting factor to compensate for the lack 

of mass change caused by the reduced number of 

combinations. Computational efficiency is improved by 

introducing the factor w compared to the traditional bin 

method. 

 Equations (1), (5) and (6) assume collision and 

coagulation among particles of the same type of 

hydrometeor. We can extend these expressions to those 

for poly-dispersions for different types of hydrometeors, 

such as the seven hydrometeor types identified in the 

Hebrew University Cloud Model [Khain and Sednev, 

1996] as follows: 
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 (7)	
 

          (8) 

where µ,ν, σ and λ represent the type of hydrometeor, 

Nspc is the number of hydrometeor types and L is the 

number of hydrometeor types selected in the 
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Monte-Carlo integration. The quadruplex integration in 

(7) is reduced to a double summation in (8), so that the 

MI introduces a significant benefit in the calculation 

time for the collision-coagulation process for 

poly-dispersions including different types of 

hydrometeors. In summary, the computational 

efficiency is improved by random bin selection with 

ratio of w1 (=NbinC2/M) and also by hydrometeor type 

selection with ratio of w2 (=Nspc
2/L). The total 

computation time is therefore reduced by the factor 

Rcomp = 1/ w1 w2. 

 In case of large w, the size distribution in the next 

time-step can become negative when gi<Δgi or gj<Δgj. 

In this case, we assure positive definiteness by the 

following procedure as proposed by Bott [1998]. 

        (9) 

 Our method is also different from traditional bin 

method in terms of calculation order regarding 

hydrometeor types and sizes of hydrometeor. 

Traditional bin methods calculate interaction of 

different hydrometeor types and different sizes by 

collision with specific order [e.g. first, collision of 

liquid drop and ice particle, second liquid drop and 

snow particle, next, liquid drop and graupel etc.]. This 

can be invalid for collision process in nature if the 

natural collision process occurs randomly in terms of 

paring of colliding particles and types. In our MI, 

however, collision process is calculated by random 

order about hydrometeor type and size of hydrometeor 

because the order is selected by uniform random 

number. This may be more suitable to represent the 

stochastic nature of collision process in real clouds.  

 

3. Results of numerical experiments with a box 

model 

 In this section, we show the results of numerical 

simulations with the present MI applied to a 

zero-dimensional box model, which calculates the 

development of SDF by only the collision-coagulation 

process. Simulated results are compared with the 

analytic solution of SCE [Golovin, 1963] and the 

results with Exponential Flux Method [Bott, 2000] 

(henceforth abbreviated as EFM). We also evaluate the 

computational cost and error of the MI. 

 For the test simulation, we integrate the SCE over the 

total time of 7200 s with a time interval of Δt= 1 s. The 

SDF is discretized by Nbin = 300 size-bins through 

uniformly dividing the logarithm of the hydrometeor’s 

mass. Only one type of hydrometeor (water droplet) is 

considered. The initial size distribution is assumed to 

be the form of a gamma function: 

  (10) 

where L’ is the total cloud water content and  is 

the mean droplet mass. The mean radius of 

hydrometeor  can be defined as  

where ρ is the density of water. We assume L’ = 1 g 

m-3 and = 10 µm in our simulation.  

 Figure 1a compares the MI result with the analytic 

solution for the Golovin kernel function K(m’,m) = 

(1.5×10-3)×(m+m’) [Berry, 1967]. It shows that the 

SDF obtained by the MI are not smooth functions of 

mass of hydrometeor but this non-smooth nature does 

not develop with time. The peak mode radii are same as 

those of analytic solution. And the maximum deviation 

from the analytic SDF at each time-step remains similar 

to that of traditional method (not shown). The root 

mean square error in the SDF over the total time 

becomes less than that of the traditional bin method 

when R (=1/w1) is larger than 0.031. 

 Figures 1b and 1c compare the results of the MI with 

the EFM using a realistic kernel called the 

Hydro-dynamic Kernel: 

, (11) 

where V(m) and r(m) are the terminal velocity and 

radius of a hydrometeor whose mass is m, respectively, 

and Ecol and Ecoal represent the collection and 
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coalescence efficiencies, respectively. In this case, the 

MI gives an appropriate SDF when R (= 1/w1 = 

M/NbinC2) is in the range from 0.056 to 1 as shown in 

Figures 1b and 1c. However, growth of hydrometeor 

becomes delayed (see Fig. 1c) when R becomes as 

small as 0.031. A detailed study of the simulation 

results suggests that this delay begins when the 

compensation factor w in (6) becomes inadequately 

large, producing a significantly large value of Δgi,j 

which cannot be adequately corrected by (9). Therefore, 

R should be set as larger than 0.056 in the present MI. 

 Figures 2a and 2b show CPU time taken by the MI as 

a function of R and Rspc(= 1/w2 = L/Nspc
 2). The figure 

shows that the CPU time changes in proportion to R 

and Rspc. When R is one, the CPU time of the present 

method is larger than that of the traditional bin method 

due to the cost of generating random numbers. When R 

is 0.056, which is the minimum value of R required for 

appropriate results, the CPU time is about 10% of 

traditional bin method. 

 

4. Comparison with the traditional bin method 

using a two-dimensional model 

 We also performed two-dimensional simu- lations in 

order to compare the results from the MI and the 

traditional bin method. We selected two cases for 

simulation: a convective cloud case and a shallow 

stratus case generated by a warm bubble. We use a bin 

model developed by Suzuki et al. [2006, 2010a, 2010b]. 

The simulation domain is a two-dimensional area (x-z) 

of 30 km (dx = 0.5 km) in the horizontal direction and 

15 km (dz = 0.2 km) in vertical direction for the 

convective cloud case, and 30 km (dx = 0.5 km) in 

horizontal and 5 km (dz = 0.05 km) in vertical direction 

for the stratus case. Initial conditions of wind shear, 

relative humidity and temperature as shown in Figure 3 

are based on Suzuki [2004] for convective cloud and 

Suzuki et al. [2006] for stratus cloud, respectively. To 

trigger convection and cloud formation, a warm bubble 

is initially located as a potential temperature 

perturbation Δθ following Gallus and Rancic [1996]: 

,   (12) 

where x0 = 9 km, z0 = 1 km, xr = 5 km, z r= 1 km and Δθ 

= 1 K for the convective cloud case, and x 0= 9 km, z0 = 

0.5 km, x r= 5 km, zr = 0.5 km and Δθ = 1 K for the 

stratus case. In the stratus simulation, we consider only 

warm processes because the cloud top temperature is 

always above 273 K. On the other hand, the convective 

cloud simulation is performed including the ice phase 

process with the seven types of hydrometeors, i.e., 

cloud droplet, ice crystals (plate, column, dendrite), 

snow, hail and graupel. First, we set Rspc = 1 and 

various R values from 1 to 0.056, and we take an 

ensemble average of five experimental results where R 

are same but the seeded random numbers are different. 

We integrate for 7200 s (two hours) with a time-step of 

Δt= 1 s. SDFs of hydrometeors are discretized into 60 

size-bins [i.e. Nbin=60] by uniformly dividing the 

logarithm of the mass of hydrometeor. The range of 

hydrometeor size is defined as 3-3000µm. We call 

3-30µm, 30-300µm, and 300-3000µm cloud, drizzle 

and rain water, respectively. 

 Figure 4 shows a snapshot of the cloud effective 

radius distribution for the convective cloud case 60 min 

after the start of the calculation. As expected from the 

previous tests, the present method gives results similar 

to the traditional bin method even if R is as small as 

0.056. Figure 5 shows the relative error of the MI 

from the result of the traditional bin method. The mean 

error of each set of simulations changes exponentially 

with R. Relative errors of the effective radius of cloud, 

,        (13) 

and the accumulated amount of cloud water content, 

integrated from the initial time to the end of simulation, 
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are about 3% and that of surface rain fall is less than 

1% when R is 0.056. 

 Next, we change Rspc for a fixed R at 0.124. Figure 6 

shows the accumulated amount of snow water content. 

When Rspc is less than one, the snow amount is either 

over- or underestimated, though it seems that there is 

no specific preference of Rspc values to cause either. 

The present method over/under-estimates all ice phase 

hydrometeors, including ice, graupel and hail amounts, 

though not shown. Such over/under-estimation is 

caused by a lack of mass transfer among some 

hydrometeor types in the MI. If Rspc is smaller than one, 

there are some types of hydrometeors for which 

collision and coagulation processes are not calculated. 

As a result, some types of hydrometeors grow more 

than by the traditional method, while another type does 

not grow fast enough. There are no preferred types and 

values of Rspc for over/under-estimation as shown in 

Figure 6 because hydrometeors for calculation are 

randomly selected. Figure 7 shows relative errors of the 

MI for various values of Rspc. The relative errors for all 

the hydrometeor types change exponentially with Rspc, 

as in the case of variable R.  

 Figures 8 and 9 show a snapshot of the effective 

radius distribution and the relative error as a function of 

R, respectively, in the stratus case at t = 60 min. As in 

the simulation of the convective cloud case, the present 

method obtains results similar to the traditional bin 

method even if R is 0.056 (Figure 8) and the relative 

error changes exponentially with R (Figure 9). Figure 

10 shows the spatially averaged SDF (Mass density 

distribution) at 60 min after the start of simulation 

calculated by traditional bin and MI. These SDFs have 

complex forms with bi-modal feature. It is shown that 

the SDFs with R=0.056 and 0.124 have unsmoothed 

forms in second mode whereas the peak radii are same 

as the others, similar to the results with box model in 

section 3. This illustrates that the MI can also 

reproduce complex forms of SDF [e.g. bi-modal or 

tri-modal SDF] similar to traditional bin methods even 

for two dimensional cases. 

 Figure 11 shows the CPU time of the 

collision-coagulation process for the two-dimensional 

simulations. The slope of the fitted line for the stratus 

case (Figure 11b), 118 s, is smaller than 2291 s for the 

convective case (Figure 11a). This is because the 

collision and coagulation module is called more 

frequently in the convective case than in the stratus 

case, and also because, in convective cloud case, 

collisions between liquid particles and ice particles (e.g. 

ice crystals, snow, graupel and hail particles) are 

calculated since cloud top temperature of convective 

cloud is lower than 273 K. These results suggest that 

the more frequently the collision module is called, the 

stronger the benefit of the MI becomes in terms of the 

computational cost. For example, the MI is better for 

simulation of thick stratus clouds and deep convective 

clouds. 

 Furthermore, we evaluated how the simulation errors 

and standard deviations depend on the number of bins. 

We performed the same experiments as above but with 

30 and 90 bins and compared the standard deviations 

and errors for the simulated cloud fields with those 

obtained from 60 bins. Figure 12 shows the error and 

the standard deviation of surface rainfall. The error has 

a similar trend regardless of the number of bins (Figure 

12a), whereas the relative standard deviation decreases 

with the number of bins (Figure 12b). 

 

5. Discussion 

 In the preceding sections, we studied the behavior of 

errors produced by the present MI in comparison with 

traditional bin method. In this section, we theoretically 

interpret the results shown above and further explore 

several aspects of the present method that would be 

beneficial for its potential applications in broader 

contexts. 

 

5.1 Comparison of Monte-Carlo integration with 

aircraft data 



P1.50 

 6 

 We compared the computational errors with 

variability in aircraft observations that measure the 

SDF of clouds for investigating how comparable the 

numerical errors are to natural variabilities. This 

observed SDF is generally not a smooth function of a 

particle mass even if the cloud is relatively uniform. 

The non-smooth nature of the SDF reflects the fact that 

the cloud parameters observed in real atmosphere 

fluctuate spatially and temporally due to the turbulent 

structure of the cloud. In order to compare variability of 

cloud parameters between simulation and observation, 

a stratus simulation was performed using the present 

MI where variability of SDF in the results is caused by 

the random collision-coagulation process. The 

calculation domain is 30 km in horizontal (dx = 0.2 km) 

and 5 km in vertical (dz = 0.05 km). The integration 

time is one hour with a time-step of one second and R 

is set to 0.056. Initial conditions for temperature, 

horizontal wind and relative humidity are shown in 

Figure 13. Table 2 shows the spatially averaged mean 

and standard deviation of the effective radius by MI in 

comparison with the values for corresponding 

parameters obtained by aircraft data and by the 

traditional bin model. Aircraft data were obtained by 

B200 aircraft for the JACCS aircraft project, which 

equipped the Gerber's microphysics probe PVM-100A 

[Gerber et al., 1994]. On 2 February 1998, B200 flew 

in a region of 29±1N, 128±1E with an average speed of 

about 80 m s-1. Figure 14 shows effective radius of the 

aircraft observation data. The standard deviation of the 

effective radius from the MI is the same order as that of 

aircraft observation data. Also, the mean values and 

standard deviations of the effective radius obtained by 

the traditional bin method are almost same as those by 

the MI through cloud, drizzle and rain formation. These 

results demonstrate that both traditional bin and MI can 

represent dispersion of cloud parameters obtained by 

observation and that the random error generated by MI 

is much smaller than the variability included in the 

traditional bin model. 

 This finding suggests that the model dispersion is the 

result of internal instability caused by the dynamics of 

the cloud system itself that takes place in the real 

atmosphere, which is much larger than the random 

error generated by the MI. It can therefore be 

concluded that the dispersion caused by the present MI 

for the collision and coagulation process can be 

considered negligible compared to the natural 

variability in real atmosphere. This result supports the 

validity of the present MI. It would also be interesting 

to compare the SDFs calculated by the MI with those 

obtained from aircraft observations in terms of their 

randomness although such comparisons are difficult 

because observations always suffer errors in 

instrumentation as well as their random feature in 

nature.  

 This paper aims at development of a method to 

approximate the traditional bin scheme with focus on 

improvement of computational efficiency, and indeed 

demonstrated that the MI is as accurate as the 

traditional bin models that have been compared with 

SDF observations by many investigators [e.g., 

Khairoutdinov and Korgan, 1999]. Although the 

comparisons of the model with direct observations of 

SDF by aircraft is out of the scope of this paper, it is 

nevertheless worth noting that the natural cloud 

phenomenon with complicated size distribution 

functions cannot be fully reproduced even by 

traditional bin models as well as present MI. This is a 

common issue open for cloud modeling community, for 

which we should keep making efforts. 

 

6. Conclusions 

 We proposed an application of the Monte Carlo 

integration procedure for the integration of the collision 

and coagulation equation of hydrometeor growth. This 

method reduces the computational cost of the collision 

and coagulation process to about 10% of that of the 

traditional method, thereby providing an efficient 

approximation of traditional bin method. This method 
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employs uniformed random numbers, and it is shown 

that the results are dependent upon assumed random 

numbers. The random number principle causes some 

error, yet the error range of simulation results is found 

to be much less than internal variability that takes place 

in the real atmosphere.  

 Although the present study focused only on 

collision-coagulation processes, it is also important to 

reduce the computational costs for condensational 

growth process that is another bottle neck in cloud 

microphysical modeling as shown in Table 1. Several 

previous studies were devoted to this issue [e.g. Bott, 

1989a 1989b; Lowe et al., 2003; Suzuki, 2004; Sugiura 

et al. (personal communication)]. We will also 

investigate how our stochastic approach can be applied 

to the condensational growth processes in future 

studies.  
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Table 

Table 1. Example of the CPU times (s) and contributions to the total time (%) for calculation of cloud microphysics 

processes by a bin-type model. 

Process CPU time (s) Contribution to total time (%) 

Nucleation 

Freezing, Melting 

Condensation 

Collision-Coagulation 

All 

2.98 

3.45 

808.39 

325.13 

1139.95 

0.3 

0.3 

70.9 

28.5 

100 

 

 

Table 2. Values of effective radius and its standard deviation calculated by each model and obtained by aircraft data. 

In the simulation, t = 25 min, 30 min and 45 min correspond to the time for cloud, drizzle and rain formation, 

respectively. 

Model/Measurement Effective Radius [µm] Standard deviation 

MI (t = 25 min) 

Traditional bin (t = 25 min) 

MI (t = 30 min) 

Traditional bin (t = 30 min) 

MI (t = 40 min) 

Traditional bin (t = 40 min) 

Aircraft 

11.776 

11.778 

11.719 

11.724 

9.2868 

9.3037 

10.753 

0.30504 

0.30505 

0.43937 

0.43915 

0.66117 

0.66107 

0.20896 
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Figure 

 
Figure 1. Time evolution of the mass density size distribution (SDF) (a,b) and the smoothed result of b (c). Panel (a): 

Solid line represents the analytic solution of SCE [Golovin, 1963] and dashed lines and dot-dashed lines represent the 

numerical results obtained by the MI with R = 0.031 and 0.125, respectively. Panels (b) and (c): Solid lines represents 

the numerical results obtained by the traditional bin method, and dashed lines, dash-dotted lines, and dotted lines 

represent those obtained by the MI with R  = 0.031, 0.056, and 0.125, respectively. 
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Figure 2. CPU times for the collision-coagulation processes, normalized by the CPU time for the traditional bin 

method, as functions of (a) R and (b)  Rspc. Solid lines and dots are CPU times taken by the MI, and dotted lines are 

those for the traditional bin method. 
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Figure 3. Initial conditions for atmospheric dynamics assumed for the two-dimensional numerical experiments. (a: 

Horizontal wind, b: temperature and c: relative humidity). The upper figure is for a stratus case and the lower figure 

is for a convective cloud case. 

 

Figure 4. Horizontal distance-height sections of the cloud effective radius distribution formed by a warm bubble at t = 

60 min in the convective cloud case for Rspc = 1 and various values of R. The panel (a) represents the result of the 

traditional bin model and other panels represent MI with (b) R=0.056, (c) R=0.124, (d) R=0.25, (e) R=0.5, and (f) 

R=1. 
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Figure 5. Relative errors of the MI averaged over the whole simulation domain for time-integrated amounts of surface 

rain (----+----), cloud water content (----□----), snow water content (----＊----), and effective radius (----■----) at t = 

60 min. 

 

Figure 6. Horizontal distance-height sections of the amount of the snow water content integrated from t = 0 to the end 

of the calculation. Results for different values of Rspc are shown. The panel (a) represents the result of the traditional 

bin model and other panels represent the result from MI with (b) Rspc=0.204, (c) Rspc=0.306, (d) Rspc=0.51, (e) 

Rspc=0.612, and (f) Rspc=1. 
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Figure 7. Same as Figure 5, but for results with various Rspc and R = 0.124. 

 

Figure 8. Same as Figure 4, but for the stratus case. 
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Figure 9. Same as Figure 5, but for the stratus case. Time integrated amount of cloud water content(----+----), drizzle 

water content (---＊----), and effective radius at t= 60 min(----×----). 

 

Figure 10. Spatially averaged mass density distribution (SDF) spectra [averaged the spectra of the grid in which 

complex form of spectra are calculated] in stratus condition calculated by traditional bin (----+----) and our new 

method with R=0.056(----×----), 0.124(----＊----), 0.5(----□-----). 
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Figure 11. CPU time taken by the cloud microphysical module for the two-dimensional model simulation: CPU time 

in the (a) stratus case and (b) convective cloud case. CPU times for the MI (---+----), and for the traditional bin 

method (------). 
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Figure 12. Errors and standard deviation of surface rain obtained by MI for various number of bins: error in the (a) 

and standard deviation in the (b). 30 bin (----+----), 60 bin (---X----), and 90 bin (----＊----) . 



P1.50 

 18 

 

Figure 13. Initial conditions for atmospheric dynamics assumed for the two-dimensional numerical experiments. (a: 

horizontal wind, b: temperature, and c: relative humidity). 

 

Figure 14. Values of effective radius as a function of the flight distance of B200 aircraft in the observation on 2 

February 1998. 


