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1. INTRODUCTION 
 

The Discrete Ordinate Radiative Transfer Code 
(DISORT) (Stamnes et al., 1988, 2000) solves the 
transfer of monochromatic unpolarized radiation in a 
scattering, absorbing and emitting plane parallel 
medium, with a specified bidirectional reflectivity at the 
lower boundary. The latest version of the code uses the 
Linear Algebra PACKage (LAPACK) and supporting 
routines from the Basic Linear Algebra Subprograms 
(BLAS) for solving systems of simultaneous linear 
equations.  

DISORT has been used by many researchers in the 
atmospheric science and other communities to calculate 
the transfer of monochromatic radiation. It has also 
become a kind of standard against which to compare 
other modeling results (Stamnes et al., 2000). The time 
consuming computation of the non-Lambertian lower 
boundary, however, has emerged as a kind of 
bottleneck for implementation in schemes, like line-by-
line codes, that frequently call DISORT to do radiative 
transfer. 

DISORT applies analytical corrections to improve 
the accuracy of intensity calculations. This feature 
requires accurate specification of the scattering phase 
function. This requirement, however, not always realized 
by users. 
 
2. INTENSITY CORRECTION 
 

Strongly forward-peaked scattering is treated in 
DISORT by the δ–M method (Wiscombe, 1977) in which 
the forward peak of the phase function is separated and 
approximated by a Dirac delta-function. The remaining 
part is represented by a truncated phase function that is 
expanded in a series of Legendre polynomials that is 
shorter than the series expansion of the original phase 
function. The procedure also requires the transformation 
(scaling) of the optical depth and single scattering 
albedo. The method has proven to be both accurate and 
efficient for flux computation, but it has been shown to 
introduce spurious oscillations around the true intensity 
(Nakajima and Tanaka, 1988). 

To provide accurate intensity values with the short 
(truncated) series expansion of the phase function made 

possible by the δ–M method (and thus needing only low 
numbers of quadrature angles or “streams”), DISORT 
uses the Nakajima and Tanaka (1988) method. The 
method calculates accurate and approximate (as 
represented in DISORT by the truncated δ–M phase 
function) single and double scattered intensities, 
subtracts the approximate intensities from the δ-M 
intensities, and then adds back the accurate ones.  
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Figure 1. Reflected (top) and transmitted (bottom) 
radiances from a plane parallel ocean layer 
characterized by a highly anisotropic scattering phase 
function. The results are shown for two cases: (1) when 
all significant Legendre moments of the phase function 
expansion (NMOM=1,998) are used, and (2) when a 
shorter expansion is used (NMOM=152). 

 
When using the Nakajima and Tanaka (1988) 

intensity correction it is imperative to provide the full 
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phase function Legendre expansion, not just the 
Legendre coefficients for the truncated phase function. 
This is because accurate single and double scattered 
intensities can only be recovered from the full phase 
function expansion. Some users do not realize this 
important requirement. The consequence of using less 
than the required series expansion is illustrated in 
Figure 1. 

Reflected and transmitted intensities (radiances) 
from a plane parallel ocean layer characterized by a 
highly anisotropic scattering phase function (Mobley, et 
al. 2002) requiring 1,998 Legendre polynomials were 
calculated. (The Legendre moments were provided by 
A. Kokhanovsky and V. P. Budak.) Optical depth and 
single scattering albedo were unity and 0.99, 
respectively. The intensity of incident parallel beam at 
the top of the water layer was unity; polar angle cosine 
of the incident beam was 60o. A non-reflecting surface 
was assumed below the water layer. The calculations 
were done with DISORT using 152 computational polar 
angles and 152 Legendre polynomials in the truncated 
phase function and in the phase function used to 
calculate the single- and double-scattered intensities. 
The resulting intensities (labeled NMOM=152) are 
shown as a function of the polar angle in Figure 1. Note 
how badly the reflected intensity oscillates (top panel of 
Figure 1) around the correct solution (labeled 
NMOM=1998) that was calculated by providing all 1,998 
significant phase function moments of the polynomial 
expansion. The NMOM=152 result of transmitted 
intensity also oscillates (bottom panel of Figure 1); in 
addition, the transmitted intensity is severely 
underestimated in the direction opposite to the sun 
(forward direction). 
 
3. LOWER BOUNDARY 
 

DISORT can accurately treat the non-Lambertian 
surface reflection characterized by a general and 
realistic bidirectional reflectance distribution function 
(BRDF). The formulation of the lower boundary allows 
for a BRDF that depends on the incident polar angle µ’, 
reflected polar angle μ, and azimuth angle difference φ-
φ’ between the incident and reflected directions. By this 
formulation DISORT assumes that the surface BRDF is 
symmetric to the principle. To separate the Fourier 
components needed in DISORT, the bidirectional 
reflectivity ρd is expanded into a Fourier cosine series 
with 2N terms, where 2N is the number of computational 
polar angles (“streams”). Because the BRDF is 
assumed to be symmetric to the principle plane the 
expansion will only contain cosine terms. 
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To maintain high accuracy the coefficients of the 

Fourier expansion m
dρ are calculated from the defining 

equation, in which the integral is evaluated by an Ng-
point Gaussian quadrature with weights wk. 
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Here δm0 is the Kronecker delta. 
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Figure 2. Example of incorrect intensities resulting from 
“undersampling” the integrand (using only a 50-point 
Gaussian quadrature) in Equation 2b.  

 
Note that the integrand of Eq. 2a contains a highly 

oscillating cosine function whose frequency increases 
with the number of streams. In version 2 of DISORT this 
integral is evaluated using a fixed 50-point Gaussian 



quadrature (Ng=50). This is usually sufficient for the 
frequently used value of N<16, but clearly “under-
samples” the integrand and leads to errors when N is 
large. The situation is illustrated in Figure 2, which plots 
the upwelling intensities, as functions of the polar angle 
cosines and azimuth angles, at the top and the bottom 
of a scattering layer above a highly anisotropic surface. 
The intensities were calculated using 128 streams and 
Ng=50 in Equation 2b. Clearly, the intensities are 
incorrect; they widely oscillate as a function of the 
azimuth angle as a result of the error in the Fourier 
expansion of the surface bidirectional reflectance. 

The bidirectional reflectance in this example is 
described by the model of Hapke (1993), and calculated 
from Equation 3. Its parameters and a plot of the 
reflectance are shown in Figure 3. In Equation 3 w is the 
single scattering albedo, α is the phase angle (π-φ), P is 
the phase function, B0 and h are the amplitude and 
width of the shadow hiding opposition surge, 
respectively, and H is Chandrasekhar’s H function that 
depends on angle and w. 
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Figure 3. Three dimensional plot of Hapke's bidirectional 
model used to prescribe the lower boundary in the 
intensity calculations shown in Figures 2 and 4. 
Relevant parameters of the model are also shown. 

 
In order to adequately sample the integrand in 

Equation 2a Ng should be at least twice as large as the 
number of streams. The intensities calculated with 
Ng=2*NSTR (256 in this example) are shown in Figure 4. 
These results now show a smooth variation with both 
polar angle cosine and azimuth angle, and the wild 
oscillations with azimuth seen in Figure 2 are gone. 

Note the presence of the “hot spot” at the polar angle 
cosine of 0.5 and azimuth angle 180 degrees in the plot 
of upward intensity at the surface. The “hot spot” is also 
noticable at the top of the layer.   
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Figure 4. Same as Figure 2, but for the correct 
intensities calculated from a sufficiently sampled 
integrand (using a 256-point Gaussian quadrature) in 
Equation 2b. 

 
 

In DISORT, Equation 2b is evaluated for sevaral 
combinations of the incident and reflected angles. 
These combinations are shown in Table 1. The total 
number of times Equation 2b is evaluated is Ntotal = 
2*N*Ng*( N2 + N*Np + N + Np ) where N is the number of 
streams per hemisphere, Np is the number of user-
defined upward directions, and Ng is the number of 
Gaussian quadrature points in Equation 2b. This can be 
a very large number. For example, when N=64, Ng=256, 
Np=9, Ntotal is 155,484,160! This can be prohibitive, 
especially when DISORT is called a large number of 
times, for example to calculate intensities at many 



different wavelengths as would be the case, for 
example, in a line-by-line code. 
 
 

Fourier coefficient Number of angles 
 

N * N  
 

N  
 

N * N
p 
 

 

N
p 

 

Table 1. Number of direction pairs the Fourier 
expansion coefficients of the surface bidirectional 
reflectance is needed to be calculated in DISORT. 

 
 

In addition, in version 2.0, calculations of the 
Fourier expansion coefficients of the surface BRDF was 
implemented somewhat inefficiently in that ρd was 
unnecessarily evaluated for each Fourier term. This has 
been changed in version 2.1. In this version, 

( )kd φµµρ ∆′− ;,  in Equation 2b is only evaluated once, 
for m=0, and kept in memory for use with m>0 (Figure 5). 
This leads to an almost five-fold increase in 
computational speed relative to that with version 2.0 (as 
shown in Figure 6). The execution time is further 
reduced by not calculating the BRDF Fourier 
coefficients when the surface is the same in repeated 
runs (version 2.1.1 result in Figure 6). In summary, in 
the latest version ( )kd φµµρ ∆′− ;,  is only evaluated when 

m=0 or when the number of streams or the surface 
BRDF is changed (Figure 5). 
 
 

 
Figure 5. Flowchart of processing used in version 2.1.1 
for calculating the Fourier expansion coefficients of the 
surface bidirectional reflectance. 

 
Figure 6 plots the timing results from running the 

three versions (2.0, 2.1, 2.1.1) for a test case ten times. 
The test case was characterized by beam intensity π 
with an angle of incidence of 60o entering a slab of 
optical depth 0.2 and single scatter albedo 1.0. The 
phase function was that of Haze L model. The lower 
boundary was Hapke's BRDF with w=0.19. Intensities 
were calculated with 128 streams. 
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Figure 6. Relative execution times of the three different 
versions of DISORT as run for the test case described 
in the text. 

 
Equation 2b calls for the evaluation of the cosine 

function for multiples of the same azimuth angle. This 
can usually be time consuming using the compiler’s 
intrinsic function when the number of streams (and thus 
m) is large. The execution time can be further reduced 
by evaluating the cosine function for using the addition 
theorem of trigonometry (ATT), instead. The ATT 
requires evaluation of both the cosine and sine of the 
azimuth, and thus initially (for only a few streams) it is 
expected to be slower than using the intrinsic cosine 
function. However, after calculating the cosine and sine 
of the azimuth angle for m=1, those for m>1 are 
calculated using only additions and multiplications, 
which are faster to perform than calculating the cosine 
with the intrinsic function. The process starts by 
calculating and saving the cosine and sine of the 
azimuth angle for m=1 (C1 and S1, respectively) using 
the intrinsic functions. For m>1 the cosine and sine of 
m∆φk (Cm and Sm) are then calculated using the 
following equations: 

 
Cm = Cm-1 * C1 – Sm-1 * S1 
Sm = Sm-1 * C1 + Cm-1 * S1                (4) 
 

In each step, Cm and Sm are saved and used in the next 
step. (Of course, only Cm is needed in equation 2b.) 

To evaluate the gain in speed when using ATT 
instead of the intrinsic cosine function, km φ∆cos was 
evaluated for increasing number of computational 
streams (NSTR = i2;  i=1,…,10) . The calculation for 
each NSTR was repeated a million times. The reduction 
in execution time is shown in Figure 7 that plots the ratio 
of execution times from using the compiler’s intrinsic 
cosine function and the method of ATT as a function of 
the number of streams (NSTR).  
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Figure 7. The ratio of execution times of evaluating 
m∆φk from using the compiler’s intrinsic cosine function 
and from the method of ATT as a function of the number 
of streams (NSTR). 

 
It is clear that the ATT method can significantly reduce 
the execution time for large number of streams; it is 
already faster even for four streams. (In these tests the 
Intel Fortran compiler was used.) 
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