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1. INTRODUCTION

The Discrete Ordinate Radiative Transfer Code
(DISORT) (Stamnes et al.,, 1988, 2000) solves the
transfer of monochromatic unpolarized radiation in a
scattering, absorbing and emitting plane parallel
medium, with a specified bidirectional reflectivity at the
lower boundary. The latest version of the code uses the
Linear Algebra PACKage (LAPACK) and supporting
routines from the Basic Linear Algebra Subprograms
(BLAS) for solving systems of simultaneous linear
equations.

DISORT has been used by many researchers in the
atmospheric science and other communities to calculate
the transfer of monochromatic radiation. It has also
become a kind of standard against which to compare
other modeling results (Stamnes et al., 2000). The time
consuming computation of the non-Lambertian lower
boundary, however, has emerged as a kind of
bottleneck for implementation in schemes, like line-by-
line codes, that frequently call DISORT to do radiative
transfer.

DISORT applies analytical corrections to improve
the accuracy of intensity calculations. This feature
requires accurate specification of the scattering phase
function. This requirement, however, not always realized
by users.

2. INTENSITY CORRECTION

Strongly forward-peaked scattering is treated in
DISORT by the 8—M method (Wiscombe, 1977) in which
the forward peak of the phase function is separated and
approximated by a Dirac delta-function. The remaining
part is represented by a truncated phase function that is
expanded in a series of Legendre polynomials that is
shorter than the series expansion of the original phase
function. The procedure also requires the transformation
(scaling) of the optical depth and single scattering
albedo. The method has proven to be both accurate and
efficient for flux computation, but it has been shown to
introduce spurious oscillations around the true intensity
(Nakajima and Tanaka, 1988).

To provide accurate intensity values with the short
(truncated) series expansion of the phase function made
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possible by the ~M method (and thus needing only low
numbers of quadrature angles or “streams”), DISORT
uses the Nakajima and Tanaka (1988) method. The
method calculates accurate and approximate (as
represented in DISORT by the truncated 8—M phase
function) single and double scattered intensities,
subtracts the approximate intensities from the &-M
intensities, and then adds back the accurate ones.
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Figure 1. Reflected (top) and transmitted (bottom)
radiances from a plane parallel ocean layer
characterized by a highly anisotropic scattering phase
function. The results are shown for two cases: (1) when
all significant Legendre moments of the phase function
expansion (NMOM=1,998) are used, and (2) when a
shorter expansion is used (NMOM=152).

When using the Nakajima and Tanaka (1988)
intensity correction it is imperative to provide the full



phase function Legendre expansion, not just the
Legendre coefficients for the truncated phase function.
This is because accurate single and double scattered
intensities can only be recovered from the full phase
function expansion. Some users do not realize this
important requirement. The consequence of using less
than the required series expansion is illustrated in
Figure 1.

Reflected and transmitted intensities (radiances)
from a plane parallel ocean layer characterized by a
highly anisotropic scattering phase function (Mobley, et
al. 2002) requiring 1,998 Legendre polynomials were
calculated. (The Legendre moments were provided by
A. Kokhanovsky and V. P. Budak.) Optical depth and
single scattering albedo were unity and 0.99,
respectively. The intensity of incident parallel beam at
the top of the water layer was unity; polar angle cosine
of the incident beam was 60°. A non-reflecting surface
was assumed below the water layer. The calculations
were done with DISORT using 152 computational polar
angles and 152 Legendre polynomials in the truncated
phase function and in the phase function used to
calculate the single- and double-scattered intensities.
The resulting intensities (labeled NMOM=152) are
shown as a function of the polar angle in Figure 1. Note
how badly the reflected intensity oscillates (top panel of
Figure 1) around the correct solution (labeled
NMOM=1998) that was calculated by providing all 1,998
significant phase function moments of the polynomial
expansion. The NMOM=152 result of transmitted
intensity also oscillates (bottom panel of Figure 1); in
addition, the transmitted intensity is severely
underestimated in the direction opposite to the sun
(forward direction).

3. LOWER BOUNDARY

DISORT can accurately treat the non-Lambertian
surface reflection characterized by a general and
realistic bidirectional reflectance distribution function
(BRDF). The formulation of the lower boundary allows
for a BRDF that depends on the incident polar angle
reflected polar angle y, and azimuth angle difference ¢-
¢’ between the incident and reflected directions. By this
formulation DISORT assumes that the surface BRDF is
symmetric to the principle. To separate the Fourier
components needed in DISORT, the bidirectional
reflectivity ps is expanded into a Fourier cosine series
with 2N terms, where 2N is the number of computational
polar angles (“streams”). Because the BRDF is
assumed to be symmetric to the principle plane the
expansion will only contain cosine terms.

paludi—1' 9= ps(—1t' . p—4')=

ZAT (1,—p") cos m(g—¢') @)

To maintain high accuracy the coefficients of the
Fourier expansion p are calculated from the defining

equation, in which the integral is evaluated by an Ng-
point Gaussian quadrature with weights w.

pi (u—p')=
25,0~ [ s (st~ ¢ cos mlg - ) d(p- ). (22)
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v 2N =1,

k=:
Here &, is the Kronecker delta.
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Figure 2. Example of incorrect intensities resulting from
“undersampling” the integrand (using only a 50-point
Gaussian quadrature) in Equation 2b.

Note that the integrand of Eq. 2a contains a highly
oscillating cosine function whose frequency increases
with the number of streams. In version 2 of DISORT this
integral is evaluated using a fixed 50-point Gaussian



quadrature (Ng=50). This is usually sufficient for the
frequently used value of N<16, but clearly “under-
samples” the integrand and leads to errors when N is
large. The situation is illustrated in Figure 2, which plots
the upwelling intensities, as functions of the polar angle
cosines and azimuth angles, at the top and the bottom
of a scattering layer above a highly anisotropic surface.
The intensities were calculated using 128 streams and
Ng=50 in Equation 2b. Clearly, the intensities are
incorrect; they widely oscillate as a function of the
azimuth angle as a result of the error in the Fourier
expansion of the surface bidirectional reflectance.

The bidirectional reflectance in this example is
described by the model of Hapke (1993), and calculated
from Equation 3. Its parameters and a plot of the
reflectance are shown in Figure 3. In Equation 3 w is the
single scattering albedo, « is the phase angle (z-¢), P is
the phase function, B, and / are the amplitude and
width of the shadow hiding opposition surge,
respectively, and H is Chandrasekhar's H function that
depends on angle and w.
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Figure 3. Three dimensional plot of Hapke's bidirectional
model used to prescribe the lower boundary in the
intensity calculations shown in Figures 2 and 4.
Relevant parameters of the model are also shown.

In order to adequately sample the integrand in
Equation 2a Ny should be at least twice as large as the
number of streams. The intensities calculated with
Ng=2*NSTR (256 in this example) are shown in Figure 4.
These results now show a smooth variation with both
polar angle cosine and azimuth angle, and the wild
oscillations with azimuth seen in Figure 2 are gone.

Note the presence of the “hot spot” at the polar angle
cosine of 0.5 and azimuth angle 180 degrees in the plot
of upward intensity at the surface. The “hot spot” is also
noticable at the top of the layer.
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Figure 4. Same as Figure 2, but for the correct
intensities calculated from a sufficiently sampled
integrand (using a 256-point Gaussian quadrature) in
Equation 2b.

In DISORT, Equation 2b is evaluated for sevaral
combinations of the incident and reflected angles.
These combinations are shown in Table 1. The total
number of times Equation 2b is evaluated is N =
Z*N*Ng*(/\/? + N*N, + N + N, )where Nis the number of
streams per hemisphere, A, is the number of user-
defined upward directions, and Ay is the number of
Gaussian quadrature points in Equation 2b. This can be
a very large number. For example, when N=64, N,=256,
Np=9, N is 155,484,160! This can be prohibitive,
especially when DISORT is called a large number of
times, for example to calculate intensities at many



different wavelengths as would be the case, for
example, in a line-by-line code.

Fourier coefficient Number of angles
AT, N*N
P8, o) N
pi (et 1) N*N,
5 (ks o) N,

Table 1. Number of direction pairs the Fourier
expansion coefficients of the surface bidirectional
reflectance is needed to be calculated in DISORT.

In addition, in version 2.0, calculations of the
Fourier expansion coefficients of the surface BRDF was
implemented somewhat inefficiently in that py was
unnecessarily evaluated for each Fourier term. This has
been changed in version 2.1. In this version,
pq(p—p';Ag,) In Equation 2b is only evaluated once,

for m=0, and kept in memory for use with m>0 (Figure 5).
This leads to an almost five-fold increase in
computational speed relative to that with version 2.0 (as
shown in Figure 6). The execution time is further
reduced by not -calculating the BRDF Fourier
coefficients when the surface is the same in repeated
runs (version 2.1.1 result in Figure 6). In summary, in
the latest version p (u,—u'";Ag, ) is only evaluated when

M=0 or when the number of streams or the surface
BRDF is changed (Figure 5).
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Figure 5. Flowchart of processing used in version 2.1.1
for calculating the Fourier expansion coefficients of the
surface bidirectional reflectance.

Figure 6 plots the timing results from running the
three versions (2.0, 2.1, 2.1.1) for a test case ten times.
The test case was characterized by beam intensity =
with an angle of incidence of 60° entering a slab of
optical depth 0.2 and single scatter albedo 1.0. The
phase function was that of Haze L model. The lower
boundary was Hapke's BRDF with w=0.19. Intensities
were calculated with 128 streams.
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Figure 6. Relative execution times of the three different
versions of DISORT as run for the test case described
in the text.

Equation 2b calls for the evaluation of the cosine
function for multiples of the same azimuth angle. This
can usually be time consuming using the compiler's
intrinsic function when the number of streams (and thus
m) is large. The execution time can be further reduced
by evaluating the cosine function for using the addition
theorem of trigonometry (ATT), instead. The ATT
requires evaluation of both the cosine and sine of the
azimuth, and thus initially (for only a few streams) it is
expected to be slower than using the intrinsic cosine
function. However, after calculating the cosine and sine
of the azimuth angle for m=1, those for m>1 are
calculated using only additions and multiplications,
which are faster to perform than calculating the cosine
with the intrinsic function. The process starts by
calculating and saving the cosine and sine of the
azimuth angle for m=1 (C; and S, respectively) using
the intrinsic functions. For m>1 the cosine and sine of

MA¢ (Cn and Sn) are then calculated using the
following equations:

Chn=Cn1*C—Sm1* &1
Sn=Sm1* G+ Gr1*S: 4)

In each step, Gn and Sy, are saved and used in the next
step. (Of course, only Gy is needed in equation 2b.)

To evaluate the gain in speed when using ATT
instead of the intrinsic cosine function, cos mA¢k was

evaluated for increasing number of computational
streams (NSTR = 7 ~1,...,10) . The calculation for
each NSTR was repeated a million times. The reduction
in execution time is shown in Figure 7 that plots the ratio
of execution times from using the compiler's intrinsic
cosine function and the method of ATT as a function of
the number of streams (NSTR).
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Figure 7. The ratio of execution times of evaluating
MAg, from using the compiler’s intrinsic cosine function
and from the method of ATT as a function of the number
of streams (NSTR).

It is clear that the ATT method can significantly reduce
the execution time for large number of streams; it is
already faster even for four streams. (In these tests the
Intel Fortran compiler was used.)
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