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1. Introduction

The shape of raindrops is of fundamental inter-
est to atmospheric scientists, playing an essential role
in the remote measurement of rainfall rate and now-
casting of precipitation. Not surprisingly, numerous
publications in the literature have been devoted to
determining the raindrop shape by both experimental
and theoretical approaches. The study of the shape of
water drops falling in air apparently began with the
experiments of Lenard (1904), who speculated that a
balance between the centrifugal pressure due to inter-
nal circulation and surface tension at the drop surface
played the key role in drop deformation. Early efforts
with high-speed photography (cf. Flower 1928; Edger-
ton and Killian 1939; Blanchard 1948, 1950; Magono
1954) showed that a large water drop (of diameter
> 2 mm) falling at terminal velocity tends to take a
shape of a hamburger bun with a flattened bottom and
a curved dome top1. But the reported drop shapes
by different authors for a given drop size would dif-
fer considerably due to various experimental difficul-
ties until Pruppacher and Beard (1970); Pruppacher
and Pitter (1971) developed a refined vertical wind
tunnel to freely suspend water drops in the upward
air stream and to obtain detailed information on axis
ratio with high-quality photographs as a function of
raindrop size.

It has generally been recognized that a water drop
of diameter d < 1 mm has nearly spherical shape due
to the strong surface tension effect at the water-air
interface, with the relative air flow outside and liquid
circulation inside of the drop being basically laminar,
steady, and axisymmetric. The drops with noticeable
deformations from the spherical shape are those hav-
ing diameters d > 1 mm, which typically oscillate
when falling in air while the shedding of vortices oc-
curs in the unstable wake (Pruppacher and Klett 1978;

1actually quite different from those ‘raindrops’ of teardrop
shapes often illustrated in popular culture and even on the TV
news channels for a coming storm

Beard, Ochs, and Kubesh 1989; Szakáll et al. 2009).
Thus, the raindrop deformations of any practical sig-
nificance are essentially transient in nature, oscillating
around an ‘equilibrium’ shape. The raindrop shape,
as usually being referred to, is actually this steady ax-
isymmetric equilibrium shape, unless the attention is
particularly focused on the dynamics of drop oscilla-
tions (e.g., Beard, Ochs, and Kubesh 1989; Feng and
Beard 1991; Szakáll et al. 2009).

In principle, the steady axisymmetric equilibrium
shape of a drop falling in air can be theoretically deter-
mined by evaluating the traction boundary condition
that includes interfacial stresses from (steady axisym-
metric) fluid flows both external and internal to the
drop as well as the hydrostatic pressure due to gravity
(e.g., Feng 2010). However, rigorous as it may seem,
this effort requires detailed knowledge about the flow
fields in both the air phase outside and water phase
inside of the drop, which is not easily accessible with-
out performing sophisticated numerical computations
to solve the nonlinear Navier-Stokes equations espe-
cially at Reynolds number > 300 for noticeable drop
deformations. But the steady axisymmetric flow field
at Reynolds number > 300 is known to be unstable;
the observations typically show transient vortex shed-
ding in the wake (Pruppacher and Klett 1978; Clift,
Grace, and Weber 1978). Therefore, a truly rigorous
theoretical approach to the raindrop shape problem is
expected to involve numerical computations of tran-
sient fully three-dimensional solutions to the nonlin-
ear Navier-Stokes equations, and then to extract the
steady axisymmetric equilibrium shape through time-
smoothing over a large number of solutions at differ-
ent time steps (similar to the experimental approach
of Szakáll et al. (2009) through a histogram analysis.)

Interestingly though, several previous theoretical
attempts with incomplete account for the stress dis-
tribution at the drop surface yielded amazingly ac-
curate results for the axis ratio as well as detailed
drop shape for various drop sizes when compared with
the experimental results (e.g., Pruppacher and Pitter
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1971; Green 1975; Beard and Chuang 1987; Beard,
Feng, and Chuang 1989). Among others, the most in-
triguing method might be that of Green (1975) who
determined axis ratios by balancing the hydrostatic
pressure and surface tension with local curvatures at
the equator of an oblate spheroid, with the flow effect
completely ignored. Restricted by the assumption of
drops with an oblate spheroidal shape, however, Green
(1975) could not provide detailed description of the
drop shape with flattened bottom and rounded top–
asymmetric to the equatorial plane, though his axis
ratio agrees surprisingly well with the experiments
and more sophisticated models (cf. Beard, Feng, and
Chuang 1989). Apparently, the mathematical formu-
lation of this spheroid model is not limited to small
drop deformation. But its assumption of a constant
excess pressure inside the drop independent of drop
deformation is not consistent with the reality.

A mathematically more reasonable model for the
raindrop shape seems to be that originated from Savic
(1953), later improved by Pruppacher and Pitter (1971)
and then formalized in terms of first-order domain per-
turbation theory by Beard, Feng, and Chuang (1989).
This was a model established upon the linearized Young-
Laplace equation describing the local balance between
surface curvatures with surface tension and pressure
difference distribution across the interface, but the
viscous normal stresses arising from fluid flow were
not considered. As consistent with the regular per-
turbation procedure, the first-order drop surface de-
formation was determined by the difference between
the aerodynamic pressure (e.g., that measured by Fage
1937, at the surface of a rigid sphere for large Reynolds
number flow) outside the drop surface and the hydro-
static pressure inside a spherical drop. The results of
this perturbation model turned out to be quite accu-
rate especially for smaller drops (e.g., those with d < 4
mm) with deformations not too far from the spherical
base shape, just as one would mathematically expect
from the perturbation theory.

To remove the restriction for small drop deforma-
tion, Beard and Chuang (1987) iteratively solved the
full nonlinear Young-Laplace equation by numerical
means, using an internal hydrostatic pressure with
an external aerodynamic pressure based on measure-
ments for a sphere but adjusted for the effect of free
surface distortion and drag force magnitude. Physi-
cally, the numerical model of Beard and Chuang (1987)
contained basically the same ingredients as that in the
perturbation models of Pruppacher and Pitter (1971),
Beard, Feng, and Chuang (1989), etc. But mathe-
matically it became applicable to very large raindrops
with substantial deformations. To date, all the ex-
perimentally measured equilibrium drop shapes have

shown to agree very well with those predicted by Beard
and Chuang (1987) (cf., Szakáll et al. 2009; Beard,
Bringi, and Thurai 2010). Noteworthy here is that
in the model of Beard and Chuang (1987) the ex-
ternal pressure distribution was not determined self-
consistently from the first principles; rather it relied
on an assumption that the fractional deviation of the
adjusted pressure distribution from that of Fage (1937)
would be the same as the fractional deviation in po-
tential flow around an oblate spheroid from a sphere
and with an amplitude factor for adjusting the drag
force to balance the drop weight, the validity of which
is still open for verification.

Nevertheless, the impressive success of those ap-
proximate, seemingly incomplete models (by consid-
ering only the external aerodynamic pressure and in-
ternal hydrostatic pressure) in describing the raindrop
shape suggests that

• The viscous stresses could be relatively unim-
portant compared with the dynamic pressure;

• The dynamic normal stress due to internal cir-
culation might be negligible;

• Models much simpler than that involving the
transient fully three-dimensional solutions to the
Navier-Stokes equations might be adequate enough.

The purpose of the present work is to examine the
possibility of using the computed steady axisymmet-
ric solutions of the Navier-Stokes equations (as in Feng
2010) to determine the (equilibrium) raindrop shape.
If successful, this approach allows inclusion of almost
all the basic physical ingredients with the flow field
and free surface shape being determined simultane-
ously, and thereby many ad hoc assumptions employed
in the previous approximate raindrop shape models
can be eliminated.

2. Governing equations

As described in Feng (2010), here we consider a
liquid (water) drop of volume 4

3
πR3, constant density

ρl, viscosity µl, and surface tension γ, falling through
a gas (air) of constant density ρg and viscosity µg,
in a gravitational field with a constant acceleration of
gravity g. For convenience of analysis, all the variables
and parameters are made dimensionless by measuring
length in units of the volume-equivalent drop radius R,
fluid flow velocity v in units of drop’s terminal velocity
U , and pressure p in units of µgU/R. By measuring
fluid density in units of ρg and viscosity in units of
µg, the dimensionless liquid density and viscosity are
respectively denoted by ρ (≡ ρl/ρg) and µ (≡ µl/µg),
while those for the surrounding gas becoming unity. A
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reference frame moving with the liquid drop is adopted
here with the coordinate origin fixed at the centre of
mass of the drop. Then, the axisymmetric, laminar
flow inside and outside of the drop is governed by the
steady incompressible Navier-Stokes equations

ρ

2
Rev ·∇v = ∇· Tl with Tl ≡ −pI+µ[∇v+(∇v)T ] ,

(1)
and

1

2
Rev ·∇v = ∇ ·Tg with Tg ≡ −pI +∇v +(∇v)T ,

(2)
where Re denotes the Reynolds number defined as
2ρgUR/µg, I the identity tensor, superscript ‘T ’ stands
for the transpose, and the incompressible flow velocity
v satisfies the continuity equation ∇·v = 0.

A cylindrical (z, r)-coordinate system is used here
with the z-axis coinciding with the axis of symmetry
and pointing in the opposite direction as that of the
gravitational field. Thus, at the drop’s free surface Sf

conservation of momentum is satisfied by imposing the
traction boundary condition

n · (Tg−Tl) =
1

Ca

(

dt

ds
+

n

r

dz

ds

)

−pan+St z n on Sf ,

(3)
where Ca ≡ µgU/γ is the capillary number. The local
unit normal vector n at the free surface points from
the gas into liquid, and the local unit tangent vector t

points in the direction of increasing s (from the front
stagnation point) along the free surface and relates to
n in such a way that n×t = eθ (with the right-handed
cylindrical coordinate system (z, r, θ) being used in the
present work).

The constant excess pressure inside the drop pa is
solved as an unknown to satisfy an overall constraint
that the volume enclosed by the free surface Sf re-
mains constant

∫

Sf

r2
dz

ds
ds =

4

3
, (4)

where the Stokes number St ≡ (ρ − 1)ρg g R2/(µgU),
representing the ratio of buoyancy force and viscous
force, is also solved as an unknown to satisfy another
overall constraint that the drop’s centre of mass re-
mains at the coordinate origin

∫

Sf

z r2
dz

ds
ds = 0 . (5)

As might be noted, the gravitational (body) force term
does not explicitly appear in (1) and (2) because the
hydrostatic pressure in the bulk liquid has been lumped
in the generalized pressure p. Hence, the hydrostatic

pressure effect due to buoyancy force only appears in
the boundary condition (3) through St.

Moreover, the flow velocity field must satisfy

n · v = 0 on Sf and r = 0 , (6)

at the free surface Sf , due to the kinematic condition,
and at the axis of symmetry (r = 0), as required by
the symmetry condition. In addition, the stress-free
symmetric condition at the axis of symmetry (r = 0)
can be expressed as

ezer : T = 0 at r = 0 , (7)

where ez and er denote the unit vectors in the z−
and r−directions, respectively. (Here T without the
subscript ‘l’ or ‘g’ stands for the hydrodynamic stress
tensor in both phases.)

Among several treatments of the far-field bound-
aries, the simplest way for the present problem is to
consider a cylindrical container wall with large enough
radius (e.g., 10×R) with its centerline coinciding with
the axis of symmetry of the falling liquid drop. Thus,
at the cylindrical container wall (r = 10) and the up-
stream (or ‘inlet’) boundary (e.g., located at z = −10
in Figure 1), the Dirichlet type of condition for uni-
form flow velocity is specified as

v = ez on r = 10 and Sinlet . (8)

At the downstream (or ‘outflow’) boundary (e.g., lo-
cated at z = 15 in Figure 1), fully-developed flow
condition for hydrodynamic stresses is used, i.e.,

ezer : Tg =
∂vz

∂r
and ezez : Tg = 0 on Soutlet .

(9)
As in Feng (2010), the mathematical system (1)-

(9) contains a complete set of equations and boundary
conditions for accurately determining the steady fluid
mechanics behavior of a liquid drop falling through a
quiescient gas. By simply including an additional term
associated with ∂v/∂t on the left side of (1) and (2)
and adding a time-derivative term in the kinematic
condition (6), the system can describe the transient
fluid flow problems, too. The Reynolds number Re,
capillary number Ca, (dimensionless) liquid density ρ,
and (dimensionless) liquid viscosity µ are the four in-
dependent parameters that can be conveniently speci-
fied2, with St determined as part of the solution. Once
Re, Ca, ρ, µ, and St are given, other relevant dimen-
sionless parameters associated with a solution can all
be calculated in terms of them. For example, the drag

2According to the findings of Feng (2010), however, it seems
the combined parameter ρ/µ2 controls the basical behavior of
a liquid drop falling in gas; therefore, ρ and µ may not be
considered as completely independent
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Fig. 1. Finite-element mesh of the problem domain (as exemplified by the case of ρ = 1000, µ = 100, Re = 500,
and We = 15).

coefficient CD, Weber number We, Ohnesorge num-
ber Oh, Morton number Mo, and Eötvös number Eo
(which is also called Bond number Bo) can be evalu-
ated according to

CD ≡ 8R g (ρ − 1)/(3 U2) = 16St/(3Re) ,

We ≡ 2ρg U2 R/γ = ReCa ,

Oh ≡ µl/
√

2ρl γ R = µ
√

We/ρ/Re ,

Mo ≡ g µ4
g(ρ − 1)/(ρg γ3) = 3 CD We3/(4Re4) ,

Eo ≡ 4 (ρ − 1)ρg g R2/γ = 3 CD We/4 = MoRe4/We2.
(10)

By virtue of dynamical similarity (as discussed by
Batchelor (1967)), each solution to the nondimensional
governing equations for a set of specified Re, Ca, ρ,
and µ can represent numerous seemingly different fluid
systems and drop sizes.

It should be noted that the traction boundary con-
dition (3) is in a vector form. If a dot (or scalar) prod-
uct with the unit normal vector n is performed on
both sides (cf., Aris 1962), (3) would be turned into a
scalar equation of the form very similar to that of the
Young-Laplace equation (as used by many previous
authors for various raindrop shape models), except
standing on left side is nn:(Tg − Tl) instead of just
the pressure difference across the free interface. Actu-

ally, the term nn:(Tg − Tl) is the complete dynamic
normal stress difference across the free interface, con-
taining both the pressure and viscous normal stress
associated with fluid flow. Thus, all previous raindrop
shape models (e.g., Savic 1953; Pruppacher and Pit-
ter 1971; Beard and Chuang 1987; Beard, Feng, and
Chuang 1989) only partially accounted for the fluid
flow effects, taking the aerodynamic pressure (based
on that measured for spheres–the best available data)
to approximate the term −nn:Tg and completely ig-
noring the term nn:Tl as a consequence of the internal
circulation (apparently for lack of knowledge). These
ad hoc approximations for the normal stresses in pre-
vious raindrop shape models are eliminated naturally
in the present mathematical framework. All the dy-
namic stress terms and the shape of deformable drop
surface can now be determined simultaneously in a
self-consistent fashion.

3. Computational technique

As demonstrated by (Feng 2010, as well as sev-
eral citations therein), solutions to this type of free-
boundary problem can be computed by discretizing
the partial differential equation system (1)-(9) with
the Galerkin’s method of weighted residuals using finite-
element basis functions (cf., Strang and Fix 1973; Kistler
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and Scriven 1983)3. In doing so, the problem do-
main is divided into a set of quadrilateral elements
(cf. figure 1), with biquadratic basis functions be-
ing used for expanding the velocity field and linear
discontinuous basis functions for pressure. The distri-
bution of finite-element mesh points around the de-
formable free surface is determined by a pair of ellip-
tic partial differential equations that are also be de-
scretized by the Galerkin finite-element method (cf.,
Christodoulou and Scriven 1992; de Santos 1991). Then,
the set of nonlinear algebraic equations of Galerkin’s
weighted residuals is simultaneously solved by New-
ton’s method of iterations (Ortega and Rheinoldt 1970).
At each Newton iteration, the Jacobian matrix of sen-
sitivities of residuals to unknowns is evaluated with
the values of unknowns determined in the previous it-
eration. The resulting linear algebra system is then
solved by direct factorization of the Jacobian matrix
with a modified version of Hood’s frontal solver (Hood
1976). The iteration is continued until the L2 norm
of residual vector becomes less than 10−8. It usually
takes no more than five or six iterations to obtain a
converged solution, by virtue of the quadratic conver-
gence rate of the Newton iteration scheme.

Because successful solution of nonlinear equations
by Newton iterations relies on sufficiently accurate ini-
tial estimates of the solution, it is often convenient to
start the solution procedure by computing cases with
diminshingly weak nonlinearities at small Ca (or We)
and Re for nearly spherical drops. Once a solution for
a given set of parameters is obtained, it can be used
as an effective initial estimate for another nearby so-
lution corresponding to one or more parameters being
varied slightly in the parameter space. Thus, solutions
for almost any set of parameters, if exist, can be com-
puted by varying the parameters in small steps from
a ‘first’ solution through numerical continuation.

4. Results

Before performing any computation, we need to
specify the values of ρ and µ, among others. It is
known that ρg for air is a function of the air pressure
and temperature. If we consider the air pressure to
be fixed at 1.013 × 105 Pa (i.e., 1 atm–a standard
condition at the surface of earth), the dry air density
can be 1.292 kg/m3 at 0oC, or 1.247 kg/m3 at 10oC
or 1.204 kg/m3 at 20oC, and so on. But for water,
its density merely varies from 1000 kg/m3 at 0oC to
998 kg/m3 at 20oC. Hence without loss of generality,
assuming ρ = 800 (i.e., ρg = 1.25 kg/m3 taken at
10oC) for water drop in air can be quite reasonable.

3The actual computational code is called FECAW–Finite
Element Computational Analysis Widget–as accessible from
http://sites.google.com/site/jamesqfeng/

The fluid viscosity depends on temperature, too. For
example, the viscosity of water is 1.79× 10−3 N s/m2

at 0oC, 1.30×10−3 N s/m2 at 10oC, 1.00×10−3 N s/m2

at 20oC, 7.98× 10−4 N s/m2 at 30oC, whereas that of
air 1.71× 10−5 N s/m2 at 0oC, 1.76× 10−5 N s/m2 at
10oC, 1.81×10−5 N s/m2 at 20oC, 1.86×10−5 N s/m2

at 30oC, and so on (Batchelor 1967). Thus, the value
of µ can vary from 100 to 43 as temperature changes
from 0oC to 30oC. To be consistent with ρg = 1.25
kg/m3 taken at 10oC, we use µg = 1.8× 10−5 N s/m2

as the nominal value for air viscosity and µ = 75 as a
reference liquid-to-gas viscosity ratio.

4.1. The drop of d = 800 µm

The experiments of Szakáll et al. (2009) (among
others) showed that a drop with diameter d = 800 µm
exhibits a regular steady flow pattern of internal cir-
culation without oscillations. So the drop with d =
800µm can serve as a test case for the present model-
ing effort.

In view of the present mathematical formulation,
the solution is defined by the values of Re and Ca (or
We) with given ρ and µ. Once the solution is com-
puted and St is obtained as part of the solution which
then yields CD (= 16 St/(3 Re)), the corresponding
drop size d and terminal velocity U can be determined
according to the formulas (Feng 2010)

d = {3µ2
g Re2 CD/[4 g ρ2

g (ρ − 1)]}1/3

U = [4 g µg (ρ − 1)Re/(3 ρg CD)]
1/3

.

(11)

If we want to compute solution for a particular drop
size, e.g., d = 800 µm, we need to iteratively adjust the
value of U for specifying Re and We until the value
of d calculated from (11) converges to the target (e.g.,
800 µm, as examplified next).

According to the formulas for terminal velocity de-
rived by (Beard 1976, from various sources of the-
oretical and empirical information), a 800 µm drop
should have U = 3.225 m/s with Re = 179.164 and
CD = 0.8030 (for ρ = 800, ρg = 1.25 kg/m3, µg =
1.8×10−5 N s/m2, γ = 0.07 N/m, and g = 9.8 m/s2),
which can serve as the starting iterate for the present
computation. With the values of Re and We being
specified at 179.164 and 0.1486 (1/Ca = Re/We =
1205.68 for ρ = 800 and µ = 75), the computed re-
sult shows that St = 27.3022 which leads to CD =
0.8127, according to 16St/(3Re) in (10). From the
known values of the computed CD as well as other pa-
rameters, the drop diameter d and terminal velocity
U obtained from (11) are 0.8032 mm (slightly larger
than 800µm) and 3.2121 m/s (less than 3.225 m/s).
After a couple of iterations by adjusting the value
of U , the computed result at Re = 177.133, We =
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Fig. 2. Streamlines around a deformable drop (from
z = −2 to z = 3) for Re = 177.133, We = 0.1452
corresponding to a water drop of d = 0.8001 mm with
ρ = 800, µ = 75, and surface tension γ = 0.07 N/m,
at terminal velocity of 3.1881 m/s in air with density
ρg = 1.25 kg/m3, viscosity µg = 1.8 × 10−5 N s/m2.
The contour values for streamfunctions shown here
are 0, ±0.0001, ±0.0002, ±0.0005, ±0.001, ±0.002,
±0.005, ±0.01, ±0.02, ±0.05, ±0.1, etc.

0.1452 (for U = 3.1884 m/s) is found to yield d =
0.8001 mm and U = 3.1881 m/s from (11), and CD =
0.8218 evaluated based on 16 St/(3Re) as comparable
to 0.8217 based on 8 R g (ρ − 1)/(3 U2). Hence the
present model by computing steady axisymmetric so-
lution of the Navier-Stokes equations can provide all
the detailed self-consistent description about a water
drop of d = 800 µm falling in air.

Figure 2 shows the streamlines of flow external and
internal to the drop of d = 800µm, at Re = 177.133
and We = 0.1452. The pattern of internal circulation
appears to agree well with that shown in a visual-
ization photograph by Szakáll et al. (2009)4. The di-
mensionless value of the maximum internal circulation
velocity (namely, the internal circulation intensity) vic

is 0.0386 at polar angle θ = 67.5o (measured from the
front stagnation point) on the drop surface. This leads
to an internal circulation velocity of 12.3 cm/s, very
close to that reported by Szakáll et al. (2009).

From the resulting nodal coordinates along the
drop surface, the axis ratio

α̂ ≡ zmax − zmin

2rmax
(12)

can be readily determined for the 800µm drop as 0.9940,
where zmin, zmax denote minimum and maximum z-
coordinate values on the drop surface, and rmax is the
radius of the drop cross-section (i.e., 2 rmax represents
the maximum transverse dimension). Hence the drop
of d = 800 µm has a nearly spherical shape with slight
oblate deformation (with α̂ slightly less than unity).

4As discussed by Batchelor (1967), when the flow is steady,
the streamlines coincide with the streak lines indicated by mark-
ing material in an experimental photograph

4.2. Drops of d between 1 mm and 1.5 mm

Falling at terminal velocity in air, a water drop
of d ≥ 1 mm is expected to oscillate with periodic
vortex shedding in the unstable wake (cf. Beard 1976;
Pruppacher and Klett 1978; Szakáll et al. 2009). Such
drop oscillations tend to interrupt the regular steady
internal circulation inside the drop and thereby re-
duce the overall internal circulation effect. Without
undertaking the full three-dimensional transient sim-
ulations of the actual flow field, such a reduction of
internal circulation effect may be accounted for by
equivalently increasing the liquid viscosity µ in com-
puting the steady axisymmetric flow. By comparing
with the experimental information provided by Clift,
Grace, and Weber (1978), the computational results
of Feng (2010) suggest that µ = 200 could be a rea-
sonable choice for most of the cases with liquid drop
falling in a quiescent gas, if better knowledge is un-
available. Therefore, we start with setting µ = 200 in
computing cases of a water drop of d ≥ 1 mm with
ρ = 800.

As exemplified in § 4.1 with a few iterations by
adjusting U , we obtain a solution at Re = 273.229
and We = 0.2765 for d = 1.0000 mm and U = 3.9344
m/s with predicted CD = 0.6745 and α̂ = 0.9821 (as-
suming ρ = 800 and µ = 200). As a reference, the
terminal velocity for d = 1 mm according to the for-
mula of Beard (1976) is 3.973 m/s and α̂ by Beard
and Chuang (1987) 0.9841. The computed value of
vic is 1.88 × 10−2 corresponding to a maximum value
of steady internal circulation velocity of 7.41 cm/s.
The computational result at µ = 200 seems to predict
a terminal velocity slightly (∼ 1%) lower than that
of Beard (1976) for the drop of d = 1 mm, as sim-
ilar to that for the case of d = 0.8 mm in § 4.1 for
µ = 75. If the value of µ is reduced to 100, we obtain
U = 3.9601 m/s and α̂ = 0.9876. But the value of vic

for µ = 100 becomes 3.48 × 10−2, which corresponds
to a maximum value of steady internal circulation ve-
locity of 13.8 cm/s that seems to be unreasonable be-
cause it exceeds the observed maximum value of the
transient internal circulation velocity (Szakáll et al.
2009). Therefore, we decide to keep using µ = 200 in
the present work for lack of more accurate knowledge.

If the value of Re is set at 400, the computations
(for ρ = 800 and µ = 200) yield d = 1.2113 mm and
U = 4.7551 m/s with We = 0.2765 and CD = 0.6745.
These results are still comparable to that from Beard
(1976) at Re = 400 for d = 1.2357 mm and U = 4.6614
m/s, although the discrepancies grow from the cases
of d ≤ 1 mm especially for the value of terminal veloc-
ity. Indeed, Pruppacher and Klett (1978) suggested a
cutoff point of Re ∼ 400 for using the steady axisym-
metric solutions to describe water drops falling in air.
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Nevertheless, the computational solution can still
be obtained for larger drops such as that of d = 1.5
mm at Re = 614.906 and We = 0.9334 with U =
5.9031 m/s, CD = 0.4494, and α̂ = 0.9576 (assuming
ρ = 800 and µ = 200). Compared with the predic-
tion of Beard and Chuang (1987), i.e., α̂ = 0.9603 for
d = 1.5 mm, the present result for drop deformation
seems to be quite reasonable. But the terminal ve-
locity from Beard (1976) for d = 1.5 mm is 5.3275
m/s, about 10% less than the present computational
result. This indicates inappropriate representation of
the actual transient three-dimensional flow field using
the steady axisymmetric solution when Re ∼ 600, as
commented by Pruppacher and Klett (1978). Thus,
an alternative approach for computing the raindrop
shape with d ≥ 1.5 mm might be more desirable.

In view of the impressive success of previous mod-
els for the raindrop shape (Pruppacher and Pitter
1971; Beard and Chuang 1987; Beard, Feng, and Chuang
1989) by accounting only for the external aerodynamic
pressure as the net flow effect based on that obtained
at a fix value of Re, the most important parame-
ter associated with the aerodynamic flow that signifi-
cantly influences the drop deformation as the drop size
changes appears to be the Weber number We, as ex-
plicitly shown in the nondimensionalized formulations
of Beard, Feng, and Chuang (1989)5. The exact value
of Reynolds number Re at which the aerodynamic
pressure was measured does not seems to play a signif-
icant role on the drop shape evaluation. This is prob-
ably due to the fact that the drop deformation, when
expressed in terms of Legendre polynomials or cosine
series, behaves like a “low-pass” filter such that the
drop deformation responses to the normal stress com-
ponent associated with Legendre polynomial of degree
n is demagnified by a factor of (n2 + n− 2)−1 (Beard,
Feng, and Chuang 1989). If the normal stress distribu-
tions on drop surface at different values of Re mainly
differ in the fine details represented by high-degree
Legendre polynomials, the drop shape is not expected
to change much as Re varies as long as the value of
We is fixed. On the other hand, we realize that the
steady axisymmetric solution cannot accurately rep-
resent the time-smoothed actual transient flow field
for Re > 400 as indicated by the observed change of
drag regime (cf. Pruppacher and Klett 1978). There-
fore, it might be practically justifiable to disregard the
value of Re that exactly matches all the physical prop-
erties (according to 2ρg R U/µg), and (iteratively) de-

5Another apparently important parameter is the Bond num-
ber Bo, also known as Eötvös number Eo in (10); but it’s
associated with the hydrostatic pressure rather than the flow
effect and it does not have direct influence to the drop defor-
mation in the first-order perturbation equations (Beard, Feng,
and Chuang 1989).

termine a value for Re such as to have a steady axisym-
metric solution consistent with the drag coefficient
CD = 8 Rg (ρ − 1)/(3 U2) and Weber number We =
2ρg U2 R/γ for a given U and R. Hence, the drop
shape, fluid dynamic stresses as well as hydrostatic
pressure can be naturally adjusted self-consistently.

For example, when the value of Re is iteratively
determined as 417.804 with the values of We and CD

specified at 0.7602 and 0.5518 (based on ρg = 1.25
kg/m3, d = 1.5 mm, U = 5.3275 m/s, and γ = 0.07
N/m, with ρ = 800 and µ = 200), the solution yield
an axis ratio α̂ = 0.9586 as quite reasonable in com-
parison with that of Beard and Chuang (1987). The
computed value of vic is 2.22 × 10−2 corresponding
to an internal circulation intensity of 11.8 cm/s, ap-
parently very close to the maximum velocity observed
by Szakáll et al. (2009) for a transient internal cir-
culation. Thus, by computing solutions at a value of
Re consistent with the specified values of We and CD

according to the given drop size d and correspond-
ing value of U from Beard (1976), we may be able
to predict raindrop shape for all drop sizes that are
of practical interests without the need of further as-
sumptions for explicitly adjusting aerodynamic pres-
sure according to drop deformation as in Beard and
Chuang (1987). Noteworthy here is that we must
rely on the available knowledge about the terminal
velocity as a function of drop sized (instead of pre-
dicting U as part of the solution computation), to
model the steady axisymmetric raindrop shape with
a self-consistent flow field, for drops of d ≥ 1.5 mm.
The steady axisymmetric flow field at Re = 417.804
may be considered as a reasonable approximation of
the time-smoothed actual transient flow field at Re =
2ρg R U/µg = 554.9479 for it at least yields the drag
coefficient CD that matches the measured value.

4.3. Drops of d ≥ 2 mm

As described in § 4.2 for the case of d = 1.5, we
now compute solutions for drops of d ≥ 2 mm with
ρ = 800 and µ = 200 at specified values of U , We,
and CD provided in Table 1 for given d where the
iteratively determined values of Re and the computed
results for the internal circulation intensity vic and
axis ratio α̂ are also listed.

The value of Re in table 1 for a given drop size d is
generally smaller than that evaluated with ρg dU/µg.
This may be expected by realizing the fact that the
time-smoothed governing equations for a transient flow
usually contains Reynolds stresses (also known as “ap-
parent” stresses) that effectively enhance the viscos-
ity as a consequence of the additional eddy viscos-

ity Schlichting (1968). Thus, the net effect of time-
smoothing may be considered as to reduce the value
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d (mm) U (m/s) We CD Re vic α̂

2 6.4006 1.4631 0.5097 504.478 2.40 × 10−2 0.9283
3 7.8846 3.3304 0.5038 569.180 2.60 × 10−2 0.8528
4 8.6012 5.2843 0.5645 522.112 2.69 × 10−2 0.7688
5 8.8390 6.9757 0.6682 436.632 2.71 × 10−2 0.6837
6 8.8672 8.4243 0.7967 362.304 2.67 × 10−2 0.6029
7 8.8655 9.8246 0.9298 312.418 2.63 × 10−2 0.5262
8 8.9412 11.4207 1.0447 291.472 2.56 × 10−2 0.4513

Table 1. Values of drop diameter d, terminal velocity U , Weber number We, drag coefficient CD, Reynolds
number Re, internal circulation intensity vic, and axis ratio α̂ determined by solving Navier-Stokes equations at
specified values of We, CD based on the values of U according to Beard (1976), with ρg = 1.25 kg/m3, γ = 0.07
N/m, ρ = 800, and µ = 200.

of Re by increasing viscosity. However, the eddy vis-
cosity is not uniformly distributed like µg; it rather
depends on the local eddy intensity. Strictly speak-
ing, the nonzero eddy viscosity can only exist in the
oscillatory wake region. Simply reducing the value of
Re might at best be regarded as a first approxima-
tion that needs further verification by more thorough
investigations.

Despite the drastically different approach, the value
of axis ratio α̂ obtained with the present model agrees
reasonably with that reported by Beard and Chuang
(1987) up to d ∼ 5 mm but deviates toward more
severe drop deformation for larger d. In addition to
α̂, the predicted maximum internal circulation veloc-
ity vic U (e.g., 15.4, 20.5, 23.1, 24.0, 23.7, 23.3, and
22.9 m/s respectively for d = 2, 3, 4, 5, 6, 7, and 8
mm) seems to matche the observation of Szakáll et al.
(2009) quite reasonably6.

Figure 3 shows streamlines and shapes for water
drops of d = 2, 4, 6, and 8 mm falling in air. With
increase of drop size, the present model yields the drop
shape closer to that of Beard and Chuang (1987) than
the perturbation model (e.g., Pruppacher and Pitter
1971; Beard, Feng, and Chuang 1989). For example,
figure 4 shows that for a drop of 5 mm the shape
predicted by the present model (solid line) seems to
differ very little from that of Beard and Chuang (1987)
(dotted line), with the axis ratio α̂ differing by less
than 4% (0.6837 versus 0.7080). Even at d = 8 mm,
the flattened drop base does not seem to show a dimple
predicted by the perturbation model for d ≥ 5, being
consitent with Beard and Chuang (1987). Physically,
the occurrence of a dimple indicates a rapid change in

6The maximum values of internal circulation velocity re-
ported by Szakáll et al. (2009) describe the time dependent
flows with velocities varying from zero to the maximum val-
ues. Therefore, the maximum internal circulation velocity de-
termined here for the equilibrium (or time-smoothed) flow field
is expected to be somewhat less than the maximum value of
Szakáll et al. (2009).

drop’s surface curvature that must be a consequence
of a rapid change in the normal stress difference across
the interface. Hence, the absence of a dimple suggests
that the normal stress difference across the interface is
likely to vary gradually rather than abruptly around
the front stagnation point.

The plots of normal stress distribution shown in
figure 5 indicate that the external normal stress,
− (4/Re)nn:Tg, plays the major role in deforming
the drop surface with its relatively large magnitude
of variation; but the magnitude of variation of the in-
ternal (dynamic) normal stress, −(4/Re)nn:Tl, is not
really negligible, although not as significant. Some-
what modified by the internal (dynamic) normal stress
(especially noticeable for d = 1 mm), the plot of net
dynamic normal stress distribution, −(4/Re)nn:(Tg−
Tl), in figure 6 appears qualitatively similar to that of
the external normal stress in figure 5. The combi-
nation of the net dynamic normal stress, the hydro-
static pressure St z, and the excess pressure pa con-
stitutes the total net normal stress. Multiplied by a
factor of We/4, the total net normal stress becomes
Ca[nn:(Tg −Tl)−St z +pa], which equals the sum of
the principal curvatures of drop surface–the term asso-
ciated with 1/Ca on the right side of (3). The plot of
sum of the principal curvatures in figure 6 shows that
the curvatures around front and rear stagnation points
(θ ∼ 0o and ∼ 180o) are reduced whereas that around
equator (θ ∼ 90o) enhanced from that of a sphere
(with the sum of the mean principal curvatures equal
to 2). Obviously, the drop of d = 1 mm has a nearly
spherical shape with the sum of the mean principal
curvatures differing little from 2, whereas the drops of
d = 2 mm and 5 mm have local curvatures deviating
from that of a sphere much more noticeably.

Unlike the external normal stress with the vis-
cous stress component offering a negligible contribu-
tion (generally having a magnitude < 1% of that of the
aerodynamic pressure), the internal (dynamic) normal
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Fig. 3. Streamlines around deformable drops (from z = −2 to z = 4) for We = 1.4631, 5.2843, 8.4243, and
11.4207 and CD = 0.5097, 0.5645, 0.7967, and 1.0447 corresponding to water drops of d = 2, 4, 6, and 8 mm
with terminal velocity of 6.4006, 8.6012, 8.8672, and 8.9412 m/s in air. The numerical solutions are computed
at the Re = 504.478, 522.112, 362.304, and 291.472 for specified values of We and CD.

stress consists of both the pressure term and viscous
stress component with comparable magnitudes. It
seems the overall effect of the internal normal viscous
stress component is to reduce the variation magnitude
of the internal dynamic pressure due to internal circu-
lation; thereby, the internal (dynamic) normal stress
distribution along the free surface appears smoother
with less variation magnitude than that of the internal
dynamic pressure.

Figures 5 and 6 illustrate the fact that the net nor-
mal stress around the front stagnation point tends to
spread to a larger area, rather than to concentrate in a
region around θ ∼ 0o, with increasing the drop defor-
mation. Therefore, no sign of dimple formation at the
front stagnation point even for very large drops (like
that of d = 8 mm in figure 3). This is also consistent
with the sum of the principal curvatures (as shown in
figure 6) having positive values quite far from zero at
θ = 0o.

In principle, the adjusted aerodynamic pressure of
Beard and Chuang (1987) multiplied by an amplitude
factor is an approximation to the net dynamic normal
stress in a complete description of fluid mechanics as
obtained with the present model. The aerodynamic
pressure distribution used by Beard and Chuang (1987)
was based on the measurement of Fage (1937) with a
rather flat (i.e., almost constant) distribution on the
rare surface of drop, in contrast to the present result
with a gradual increase from equator to the rare stag-
nation point (cf. figure 6). Such an obvious difference
in normal stress distributions seems to only result in
a slight flattening of the drop surface around the rare
stagnation point for the present shape comparing with
that of Beard and Chuang (1987) (for d = 5 mm shown
in figure 4). As discussed before, this is due to the
fact that the drop deformation tends to diminish the
“short-wavelength” effect, as indicated in the pertur-
bation formulas in terms of Legendre polynomials (cf.
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Fig. 4. Shape of the drop of d = 5 mm. Solid line–present model, computed at Re = 436.632 and We = 6.9757
(= 436.632 Ca) with ρ = 800 and µ = 200, and dotted line–the model of Beard and Chuang (1987).

Beard, Feng, and Chuang 1989) where the drop shape
responds to the normal stress component associated
with Legendre polynomial of degree n is demagnified
by a factor of (n2 + n − 2)−1. Therefore, very sim-
ilar raindrop shape can be obtained with models us-
ing noticeably different normal stress distributions, as
long as the coefficients for low-degree Legendre poly-
nomials are close enough. In fact, Beard, Feng, and
Chuang (1989) showed that the axis ratio can be well
approximated by using only the coefficient of Legen-
dre polynomial of degree n = 2.

Figure 7 shows a comparison of axis ratio predicted
by the present model and that of Beard and Chuang
(1987), which can actually be fitted in simple formulas
as

α̂ =

{

1 − 0.0159 d2.2 for d < 2 mm
0.0019 d2 − 0.0864 d + 1.0942 for d ≥ 2 mm

.

The discrepancy becomes increasingly noticeable as
drop size increases from d = 4 mm. However, the drop
shape determined by the present model appears quite
similar to that of Beard and Chuang (1987) even up to
d = 5 mm (cf. figure 4 for the drop shape comparison
of d = 5 mm), with only a slightly more flattening

around the rear stagnation point. But for drops of
d > 5 mm, the present result show a more severely
deformed shape.

4.4. Cases at 20
oC and 1 atm

As might be noted, our nominal results presented
so far are based on fluid properties at 10oC and 1 atm
(the standard sea level pressure). If the temperature
is increased to 20oC, as sometimes being considered
in the literature (e.g., Beard 1976), we should have
ρg = 1.20 kg/m3 and ρ = 829, µg = 1.8 × 10−5 N
s/m2 and µ = 55. Based on these parameter values
and following the procedure described in § 4.1, we can
perform straightforward computations for the solution
for a drop of 800 µm. The result shows that U =
3.2393 m/s, CD = 0.8249, and α̂ = 0.9985 at Re =
172.7627 and We = 0.1439, quite comparable to U =
3.2596 and Re = 173.8461 obtained from the formulas
of Beard (1976). If the same parameter setting were
applied to a drop of d = 1 mm, we would obtain U =
4.0616 m/s, CD = 0.6558, and α̂ = 1.0046–a prolate
shape–at Re = 270.773 and We = 0.2828. This is
consistent with the finding of Feng (2010) that prolate
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Fig. 5. Normalized external and internal normal stress distributions along the drop surface, −(4/Re)nn:Tg

and −(4/Re)nn:Tl (which is shifted by a constant such that its value at θ = 0o is zero), for cases of d = 1
mm (Re = 273.229, We = 0.2765), d = 2 mm (Re = 504.478, We = 1.4631), d = 5 mm, (Re = 436.632,
We = 6.9757), with ρ = 800 and µ = 200. Here the normal stress is normalized in such a way as to be
consistent with the nondimensionalization of Beard and Chuang (1987); Beard, Feng, and Chuang (1989).

d (mm) U (m/s) We CD Re vic α̂

2 6.4890 1.4437 0.5139 496.170 2.38 × 10−2 0.9291
4 8.7515 5.2518 0.5651 519.502 2.67 × 10−2 0.7709
6 9.0389 8.4036 0.7945 362.656 2.67 × 10−2 0.6054
8 9.1041 11.3670 1.0443 290.034 2.56 × 10−2 0.4544

Table 2. As in table 1 but with ρg = 1.20 kg/m3, γ = 0.07 N/m, ρ = 829, and µ = 200 (at 20oC and 1 atm).

drop shape appears for We < 10 and Re ≥ 200 when
ρ/µ2 > 0.15 (because ρ/µ2 = 0.274 for ρ = 829 and
µ = 55.) But almost all the observations reported in
the literature indicate a water drop falling in air with
d = 1 mm has an oblate shape. Therefore, the solution
with larger value of µ for d ≥ 1 mm seems to be
more reasonable for describing the drop deformation,
because the vortex shedding induced drop oscillations
tend to reduce the internal circulation intensity with
a similar effect as increasing the liquid viscosity (cf.
Feng 2010, and citations therein).

Following the similar approach described in § 4.2
with µ = 200, we can compute a solution with U =
3.9755 m/s, CD = 0.6846, and α̂ = 0.9824–an oblate
shape with α̂ comparable to that of Pruppacher and
Pitter (1971); Beard and Chuang (1987); Beard, Feng,
and Chuang (1989)–at Re = 265.033 and We = 0.2709
for d = 1 mm. Using the formulas of Beard (1976)
would yield U = 4.0087 m/s and Re = 267.245 for

d = 1 mm. As in § 4.3 for d ≥ 2 mm, we can de-
termine the drop shape by computing solutions with
Re being determined for satisfying specified values of
We and CD according to a known terminal velocity U
(e.g., from Beard (1976)) for a given d with ρ = 829
and µ = 200. Table 2 shows the values of d, U , We,
CD, and iteratively determined Re, computed inter-
nal circulation intensity vic, and axis ratio α̂ at 20oC
and 1 atm. Because the corresponding value of We is
slightly reduced at 20oC from that at 10oC in table 1,
the axis ratio α̂ increases slightly for slightly less de-
formed drop. But the differences are so small (e.g.,
< 1%) that the results for drop deformation at 10oC
and 1 atm may be considered to remain the same for
20oC and 1 atm.
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Fig. 6. Net dynamic normal stress distribution, −(4/Re)nn:(Tg − Tl), and sum of the principal curvatures,
Ca[nn:(Tg −Tl)−St z+pa], along the drop surface, for cases of d = 1 mm (Re = 273.229, We = 0.2765), d = 2
mm (Re = 504.478, We = 1.4631), d = 5 mm (Re = 436.632, We = 6.9757), with ρ = 800 and µ = 200. Here
the net dynamic normal stress distributions are shifted by a constant such that their values at θ = 0o remain
unchanged from that of the external normal stress.

d (mm) U (m/s) We CD Re vic α̂

2 7.0706 1.4284 0.5222 479.792 2.33 × 10−2 0.9313
4 9.5777 5.2418 0.5692 507.822 2.61 × 10−2 0.7751
6 9.9155 8.4272 0.7966 357.738 2.62 × 10−2 0.6116
8 9.9747 11.3708 1.0496 284.616 2.51 × 10−2 0.4611

Table 3. As in table 1 but with ρg = 1.00 kg/m3, γ = 0.07 N/m, ρ = 1000, and µ = 200 (at 0oC and 0.775
atm).

4.5. Cases at 0
oC and 0.775 atm

For a raindrop aloft, e.g., at 0oC and 0.775 atm,
we would have ρg = 1.00 kg/m3, µg = 1.71 × 10−5

Ns/m2, ρ = 1000 and µ = 100. For a drop of d =
800 µm, we obtain U = 3.4867 m/s, CD = 0.8599,
and α̂ = 0.9925 at Re = 163.1240 and We = 0.1389,
quite comparable to U = 3.5389 and Re = 165.5606
obtained from the formulas of Beard (1976). For a
drop of d = 1 mm, we assume µ = 200 with ρ = 1000
(as explained previously). The computational result
indicates that U = 4.3164 m/s, CD = 0.7013, and
α̂ = 0.9824 at Re = 252.418 and We = 0.2662, while
the formulas of Beard (1976) would yield U = 4.3615
m/s and Re = 255.060.

For d ≥ 2 mm, again we compute solutions follow-
ing the same approach as in § 4.3 with ρ = 1000 and
µ = 200 according to specified values of U , We, and

CD given in table 3. The model predictions of the
value of Re, the internal circulation intensity vic, and
axis ratio α̂ at 0oC and 0.775 atm shown in table 3
do not seem to vary much from that in tables 1 and
2, i.e., within ∼ 3%. Thus, our results for drop de-
formations at 10oC, 20oC and 1 atm are basically the
same for drops aloft, as consistent with the findings of
Beard (1976).

5. Discussion

By computing numerical solutions for steady ax-
isymmetric flows governed by Navier-Stokes equations,
we have demonstrated the model capability for de-
scribing the raindrop shape along with the associated
flow field self-consistently. Except for relatively small
drops of d < 1 mm, however, choosing parameter val-
ues for the computation do not appear straightfor-
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Fig. 7. Comparison of axis ratio predicted by the present model (solid line) and that of Beard and Chuang
(1987) (dotted line).

ward, due to the nature of using the steady axisym-
metric governing equations to determine the time- smoothed
behavior of transient, three-dimensional flow field. For
example, drops of d ≥ 1 mm tend to have an unsteady
wake with vortex shedding that triggers drop oscil-
lations (cf. Beard 1976; Pruppacher and Klett 1978;
Beard, Ochs, and Kubesh 1989; Szakáll et al. 2009).
Hence, the regular internal circulation is interrupted
with its time-smoothed intensity reduced as if the liq-
uid viscosity is increased. Therefore, in computing the
steady axisymmetric solutions of Navier-Stokes equa-
tions for describing the time-smoothed drop behavior,
it is reasonable to set the viscosity ratio µ at a value
greater than that evaluated with the viscosity values
for water and air, e.g., to use µ = 200 according to
the findings of Feng (2010).

But when d > 1.5 mm and Re > 600, the model
prediction of the drag coefficient CD deviates notice-
ably from the experimentally measured value, indi-
cating that the computed steady axisymmetric flow
field cannot adequately describe the time-smoothed
actual transient flow for Re > 600. Thus, we tried an
approach by adjusting the value of Re so as to have

computationally determined CD and U match the ex-
perimentally measured values, while keeping the value
of We fixed at that evaluated based on the experimen-
tally measured terminal velocity U , for µ = 200 and
d > 1.5 mm. This approach seems to yield drop axis
ratio comparable to the experimental data (described
by the model of Beard and Chuang 1987) up to d ∼ 5
mm, beyond which it consistently over-estimates the
drop deformation (as shown in figure 7).

Considering the fact that evidence for setting µ =
200 is not really that strong and the value of µ may
offer another freedom for model adjustment, we then
tried to allow both Re and µ to vary for matching
the experimentally measured CD, U , and α̂ (as given
by Beard and Chuang 1987), again with the value of
We kept fixed. The results so obtained are shown in
table 4, with the values of α̂ varying no more than
±1% from that of Beard and Chuang (1987). Now
with this approach, the only thing left for this model
to predict seems to be the drop shape because even the
axis ratio is given a priori. The drop shape predicted
by this model for d = 6 mm is shown in figure 8,
with that of Beard and Chuang (1987) presented in
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Fig. 8. Shape of the drop of d = 6 mm. Solid line–present model, computed at Re = 339.234 and We = 8.4243
(= 339.234 Ca) with ρ = 800 and µ = 130, and dotted line–the model of Beard and Chuang (1987).

dotted line. Although the axis ratios are basically the
same, a slight difference in drop shape can still be
noticed between the present model and that of Beard
and Chuang (1987). Although determining the proper
value of µ by matching a given axis ratio α̂ seemingly
compromises the prediction capability of the present
model, it still demonstrates the intrinsic potential of
this type of model for self-consistently describing the
equilibrium deformable drop behavior even for drops
of d > 5 mm despite the complexity of the actual
transient flow field.

Another interesting finding is that the solutions
computed at fixed Re = 500 with ρ = 800 and µ = 200
for given values of We (= 500 Ca) in table 5 accord-
ing to drop size d can predict the value of axis ratio
as well as the drop shape quite comparable to those
of Beard and Chuang (1987) for raindrops of prac-
tically all sizes. Despite the theoretical shortcoming
for apparently incorrect CD, computing solutions by
this approach is much more straightforward without
the need of iteratively adjusting either Re or µ. Here,
this model with a fixed Re = 500 seems to be prac-
tically applicable for any raindrops of d ≥ 1.5 mm as
far as the drop shape is concerned. But the physical

rationale for its validity is not obvious. At the present
stage, it came about just fortuitously on a trial-and-
error basis. Yet its practical success is too impressive
to be ignored.

In principle, a complete description of the rain-
drop behavior can be achieved by computing the full
three-dimensional transient solutions of Navier-Stokes
equations. Then the ‘equilibrium’ raindrop shape can
be obtained by a time-smoothing process over a large
number of instantaneous solutions covering a long enough
time period, which can also provide information about
eddy viscosity distribution in the time-smoothed flow
field, etc. However, such a rigorous approach is ex-
pected to be quite costly. One of the important find-
ings in the present work is that despite the complex-
ity of physical mechanisms, the ‘equilibrium’ raindrop
shape seems to be rather insensitive to the fine details
in the normal stress distribution, as theoretically illus-
trated in the perturbation equations of Beard, Feng,
and Chuang (1989). Therefore, in the present work we
explore the possibilities for self-consistently describing
the time-smoothed raindrop behavior by computing
steady axisymmetric solutions of Navier-Stokes equa-
tions, with the Reynolds stresses being accounted for
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d (mm) U (m/s) µ We CD Re vic α̂

2 6.4006 200 1.4631 0.5097 504.478 2.40 × 10−2 0.9283
3 7.8846 200 3.3304 0.5038 569.180 2.60 × 10−2 0.8528
4 8.6012 180 5.2843 0.5645 515.938 2.91 × 10−2 0.7754
5 8.8390 150 6.9757 0.6682 420.132 3.36 × 10−2 0.7074
6 8.8672 130 8.4243 0.7967 339.234 3.68 × 10−2 0.6448
7 8.8655 120 9.8246 0.9298 287.240 3.85 × 10−2 0.5818
8 8.9412 110 11.4207 1.0447 258.574 3.93 × 10−2 0.5263

Table 4. Values of drop diameter d, terminal velocity U , viscosity ratio µ, Weber number We, drag coefficient
CD, Reynolds number Re, internal circulation intensity vic, and axis ratio α̂ determined by solving Navier-Stokes
equations at specified values of We, CD based on the values of U according to Beard (1976), with ρg = 1.25
kg/m3, γ = 0.07 N/m, ρ = 800.

d (mm) U (m/s) We vic α̂

2 6.4006 1.4631 2.39 × 10−2 0.9280
4 8.6012 5.2843 2.67 × 10−2 0.7648
6 8.8672 8.4243 2.80 × 10−2 0.6461
8 9.9747 11.4207 2.81 × 10−2 0.5401

Table 5. Values of given d, U , and We, with vic and α̂ determined by solving Navier-Stokes equaitons for
Re = 500 with ρg = 1.25 kg/m3, γ = 0.07 N/m, ρ = 800, and µ = 200.

by simply adjusting the values of Re and µ. Our re-
sults show that self-consistent solutions can indeed be
obtained with the raindrop shape, drag force, internal
circulation intensity, etc. all in reasonable agreement
with the experimental observations. But whether the
adjusted values of Re and µ can be justified from the
time-smoothed flow field and the eddy viscosity distri-
bution in the actual three-dimensional transient flow
is still open for future research.
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