
A Multiple Liquid and Ice Hydrometeor Species, Hybrid- Bulk/Bin, 
Three-Moment Microphysics Parameterization Scheme 

 
 

Jerry M. Straka* 
School of Meteorology, University of Oklahoma, Norman, Oklahoma 

and 
Matthew S. Gilmore 

Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota 
 
 

 
 
 
 
 
 
 
___________________________________ 
*Corresponding Author:   
Jerry M. Straka 
School of Meteorology, University of Oklahoma, 
120 David L. Boren Blvd. Suite 5900, Norman, Oklahoma 73072 
email:  jstraka@ou.edu 
 



 2 

Abstract 
A novel bulk microphysics scheme is introduced that combines what are now known to 

be essential and cutting-edge elements of microphysics schemes: a hybrid-bulk/bin framework, 
predictions for three-moments of the distribution, a shape discriminating parameterization, and 
multiple species for both liquid and ice hydrometeors.  Recent work has shown that combining 
the benefits of using a three-moment shape-predicting scheme in conjunction with hybrid-
bulk/bin for sedimentation results in a much improved time-evolving distribution shape.   The 
use of hybrid-bin framework also results in more accurate conversions between species.  The 
new microphysical parameterization has been incorporated into a fully three-dimensional, non-
hydrostatic numerical model. 

The most significant motivation for this work is to improve bulk species representation 
and species prediction and this requires the prediction of many ice and liquid species.  Multiple 
ice crystal and mixed ice crystal habits are needed to simulate the many different type of events 
of ice and snowfalls that occur in nature.  This includes a density variation for mid-size ice 
species - essential for accurate growth and differential sedimentation.  Unlike many existing 
schemes, an intermediate drizzle category is included between cloud and warm rain.  Also 
unique to this model is the use of additional rain categories to predict rain that results from A 
novel bulk microphysics scheme is introduced that combines what are known to be essential 
and cutting-edge elements: a hybrid-bulk/bin framework, predictions for results in a much 
improved time-evolving distribution shape.   The use of hybrid-bin framework also results in 
more accurate conversions between species.  The new microphysical parameterization has been 
incorporated into a fully three-dimensional, non-hydrostatic numerical model. 

The most significant motivation for this work is to improve bulk species representation 
and species prediction and this requires the prediction of many ice and liquid species.  Multiple 
ice crystal and mixed ice crystal habits are needed to simulate the many different type of events 
of ice and snowfalls that occur in nature.  This includes a density variation for mid-size ice 
species -  essential for accurate growth and differential sedimentation.  Unlike many existing 
schemes, an intermediate drizzle category is included between cloud and warm rain.  Also 
unique to this model is the use of additional rain categories to predict rain that results from 
other processes (such as melting).  In all, 23 ice habits (13 are crystal habits, four of which are 
mixed habits) and sixSIX? five liquid habits are used.  

The carefully-developed parameterizations in the scheme of those processes with the 
include complex auto auto-conversions within a between liquid species (cloud to drizzle to rain) 
and even more difficult conversions between different ice species. All of the microphysical 
processes in the new model make use of the latest physical bases found in the literature and use 
hybrid-bulk/bin parameterizations for their calculation.  Every attempt has been made to keep 
the physics as consistent as possible with observations from laboratory or in situ observations.  

Finally, the main advantage of the new parameterization is a means to avoid the huge 
memory and computational cost of bin-parameterization, while still representing the 
completeness of the physics that can be incorporated with bin-parameterization models. 
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1. Introduction 
The primary purpose of the proposed microphysical parameterization scheme is to attempt to 
make up for some of the deficiencies that are found in many bulk-microphysical 
parameterization models (e.g., Lin et al. 1983; Ferrier 1994; Walko et al. 1995; Meyers et al. 
1997; Milbrandt and Yau 2005a,b; Straka and Mansell 2005; Woods et al. 2007; Thompson et al. 
2008). The following are some deficiencies common to many bulk-parameterization 
microphysics schemes that the proposed model does not have: 

• the assumption that certain variables are constant over the entire size distribution (e.g., 
collection efficiency, mass weighted terminal velocity, mass weighted ventilation 
coefficient, particle density, and particle shape), 

• the assumption that spheres are adequate for most particles, or that there are consistent 
densities and shapes of particles with observations (e.g., ice crystals), 

• the assumption that the prediction of only one- or two-moments is usually sufficient to 
capture the essence of the microphysics of the atmosphere without some diagnostic 
equation or prediction of a distribution shape parameter, 

• The prediction of too few species such that the model must be “tuned” on a case-by-case 
basis toward the assumed dominant species,  

• The prediction without the Lagrangian timescale memory required for some improved 
accuracy with some physical processes such as auto-conversion as well as other 
conversions. 

Bin-parameterization methods can alleviate some of the shortcomings listed above (e.g., 
Takahashi 1976; Lynn et al. 2005) but not all (Straka and Rasmussen 1997). Bin-
parameterization models are also quite computationally intensive in terms of not only the 
microphysical gain and depletion terms, but particularly the advection, diffusion, and filtering of 
many the many scalars variables.  Thus, a more practical approach is to have a bulk-
parameterization model with many of the ice, liquid, and mixed-phase species as exist in nature 
and somehow incorporate the essence of the bin-parameterization models in the prognostic 
equations. At least for the time being bin-parameterization models are usually prohibitively 
expensive for operational forecasting and for very high-resolution simulations of larger storm 
systems (e.g, three-dimensional orographic precipitation, lake snow, convective precipitation).  
Though it should be noted that just recently Khain et al. (2010) used a bin-parameterization 
model with nested grids to simulate a hurricane using 3 km grid spacing in the inner nest and it 
only took eight days to complete on a computer with eight processors.  Below, brief descriptions 
of existing parameterizations and their advantages and disadvantages are discussed.  Then the 
ways in which the proposed model can improve upon previous limitations of bulk-
parameterization models are presented.  In addition, the importance of the use of multiple species 
in microphysical parameterizations is noted.   
 
a.  Bulk schemes 

1) COLLECTION GROWTH ARTIFACTS 
An important problem with bulk-parameterization models can be demonstrated with the 

simple example of raindrops collecting graupels, and graupels collecting raindrops.  In bulk 
schemes, both can be sources for graupels of various densities, frozen drops, or embryonic hail 
based upon preset mixing ratio thresholds (e.g., Lin et al. 983) which seem somewhat ad hoc.  
Also, the bulk-parameterization integrations regardless of the approach (e.g., Wisner et al 1972, 
Minuzo 1990, Verlinde et al. 1990), permit raindrops to collect graupels and vice versa across 
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the entire bulk-parameterization size spectra regardless of which is falling faster and, for three-
body interactions, it can be shown that this results in over-depletion of the source categories and 
overproduction of the third body.  One exception is the bulk scheme of Thompson et al (2008) 
where particles with smaller mean size are prevented from collecting larger particles.  Errors are 
also introduced by using a single bulk fallspeed for each distribution (larger particles falling too 
slow and smaller falling too fast) and a single collection efficiency between two interacting 
distributions.  Another artifact is that single moment bulk-parameterization models allow particle 
number concentrations that are continuously collecting (e.g., graupel collecting cloudwater) to 
artificially increase (Straka et al. 2005) even though they should remain constant (Straka et al. 
2007).  In contrast, the bin-parameterization framework and hybrid-bulk/bin framework permits 
the shapes of the raindrops and graupels to vary with size, collection efficiencies to vary with 
different sizes, and individual bins to have correct terminal velocities and geometric sweep-out 
rates with only faster-falling particles collecting slower falling resulting in more accurate 
collection rates.  This differs than Thompson et al. (2008) where smaller particles are collected 
by larger particles.   

2)  EVAPORATION, SUBLIMATION, AND MELTING ARTIFACTS 
Another important problem is demonstrated with the example of evaporation, deposition 

or melting of particles.  With the simple multi-moment, pure bulk-parameterization, larger sizes 
than would naturally evaporate (or sublimate) occurs using the familiar slope preserving 
approach for number concentration change (Ferrier 1994).  Moreover for growth by vapor 
condensation (or vapor deposition) single-moment bulk-parameterization models artificially 
increase number concentration (Straka et al. 2005; Straka et al. 2007).  With a bin 
parameterization or hybrid-bulk/bin parameterization model is mixing ratio and number 
concentration adequately re-distributed from larger to smaller hydrometeors for evaporation, 
sublimation or melting or conserved for condensation, deposition or freezing. 
 
b.  Multi-moment bulk schemes 
 
Milbrandt and Yau (2005a, b, hereafter MY05) are the first authors to have successfully 
implemented the prediction of a third moment into a bulk-parameterization model to diagnose 
shape parameters of hydrometeor size distributions.  They showed that by predicting reflectivity, 
for instance, that the shape of the gamma distribution could be diagnosed, which improved the 
realism of time evolving size distributions.  In the three-moment bulk-parameterization scheme 
the total number concentration of hydrometeor species NTx, total mixing ratio for a hydrometeor 
species Qx, and the reflectivity of a species Zx,, are predicted and the shape parameter vx is found 
from iteration.  In contrast, for the MY05 version of the two-moment scheme, the vx is preset to a 
constant or diagnosed from an equation found from previous three-moment interactions and only 
NTx and Qx, are predicted (and Zx is diagnosed from those).  The two-moment scheme with a 
diagnostic vx also can produce very reasonable results that are sometimes better than three-
moment results compared to a bin model (MY05) at least for fallout. 
 
c.  Bin model schemes 
 
Bin multi-moment microphysical parameterization models are often considered the type of 
parameterization most able to represent, for example, rain distribution evolutions in rain clouds.  
They have bins representing the spectrum of drops from very small cloud droplet sizes (D = 2 - 
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10 mm) to larger raindrops (D = 4 to 8 mm) for bin parameterizations of raindrop development.  
Each bin is usually is usually exponentially larger than the previous size / mass bin owing to the 
wide spectrum of liquid water drops that are possible, which ranges over three orders of 
magnitude.  For liquid water drop sizes, bins often will increase by 2, 21/2, 21/3, or 21/4 times 
the previous size bin over perhaps 36, 72, or 144 bins.  A shortcoming of bin models is the 
excessively large computation resources needed to make use of them in large three-dimensional 
models.  At a minimum, number concentration is predicted with these schemes, though mixing 
ratio and reflectivity can be predicted or calculated as well.  Considering number concentration 
with mixing ratio prediction improves the bin parameterization results against using just number 
concentration by limiting anomalous spreading of the distribution against analytical test 
problems of particles collecting other particles (REF NEEDED?). 
 
d.  Hybrid-bulk/bin schemes 
 
The traditional hybrid-bulk/bin microphysical parameterization model that was pioneered by 
Feingold et al. (1998) is one in which water contents and number concentrations from a two-
moment bulk-parameterization model distribution size-spectra are cast in a bin-parameterization 
model and grown/depleted by various processes.  After all the computations are made for water 
contents and number concentrations, the bin-parameterization model results are recast in the two-
moment bulk-parameterization water content and number distribution size spectra for improved 
computational efficiency in other parts of the model such as advection, diffusion and filtering.  
This was done for cloud droplets and drizzle (rain) by Feingold et al. (1998).  The three-moment 
hybrid-bulk/bin parameterization is proposed here for a model which incorporates many ice and 
liquid water hydrometeor species with microphysical all the microphysical processes such as 
collection, evaporation / condensation, sublimation / deposition, melting / freezing, conversion, 
and sedimentation.  
 By predicting a third moment to track the evolving shape parameter in a one-parameter 
gamma distribution, it should be possible to be able to preserve the resulting size distributions, 
which might otherwise be “lost” with lower number moment schemes that use a hybrid-bulk/bin 
parameterization technique.  It will be shown that a scheme similar to Feingold et al.’s (1998) 
hybrid-bulk/bin parameterization two-moment (number concentration and water content) for 
fallout becomes far superior when three-moments are used (number concentration, water content 
and reflectivity).  Thompson et al. (2008) used the hybrid-bulk parameterization for some one-
moment collection processes.   
 The present work is considered to be to some degree a proof-of-concept model for a 
complex hybrid-bulk/bin parameterization.  An important limitation is to realize that the hybrid 
bulk/bin-parameterization model will not produce the same results as a pure bin-parameterization 
model because some information is still lost when converting back and forth between the bulk-
parameterizations for advection, turbulence, filtering etc., and bin-parameterizations for the 
microphysical computations.  Another possible limitation (which follows from Milbrandt and 
Yau 2005a,b) is that it is unclear whether prediction combination of zeroth-moment (number 
concentration) and third-moment (water content) with the sixth moment (reflectivity) really gives 
a shape parameter that respects all of the particle interactions that have occurred over the time-
step [Milbrandt and McTaggert-Cowwen 2010 (this volume)].  Best-fit procedures exist (e.g., 
Freer and McFarquhar 2006) could be used to evaluate the accuracy of the new shape parameter 
(diagnosed from the predicted reflectivity).   
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e.  Importance of multiple liquid and ice species 
 
In an effort to address the “too weak stratiform regions” and “too intense convective regions” 
(e.g., McFarquhar et al. 2006) that may exist due to incorrect growth rates present in single 
moment schemes with only one ice crystal habit, several ice crystal habits have been added for 
capturing the diversity of ice crystal habits within thunderstorm anvils for hydrometeor growth 
and radiation physics.  Of particular importance are the differing self-collection processes, 
depositional growth rates, and riming rates for each of 13 cloud ice habits herein.  Having 
different species (or habits) is important because some, like dendrites, interact to produce snow 
aggregates more readily than other crystals (see Cotton et al. 1986 for a brief summary).   

Woods et al. (2007) already has shown significant sensitivities in model simulations of 
IMPROVE cases by varying the rate of a single cloud ice species in a bulk Lin et al. (1983) style 
scheme by allowing the crystals to take on the properties of the growth characteristics of 
different habits in different parts of the cloud.  The proposed model herein additionally allows 
initiation and prognostication of different various crystal types that can be simultaneously 
advected, diffused, and filtered, compete for depositional and riming growth, and also collect one 
another producing snow aggregates.  Additionally, by using specific criteria to determine the 
collection size thresholds and efficiencies (Wang 2004), something possible only in a bin or 
hybrid-bulk/bin parameterization scheme, the collection (riming) rates are reduced to more 
realistic values.  Of course, this means that some of the bulk microphysical history should be 
better represented with more ice species.  This is not only true for ice, but also for liquid 
categories.   

Important to representing different ice and liquid species is having a fully consistent 
framework where the mass-diameter relationships can be easily represented as well as the fall 
velocity-diameter relationships.  Many users of microphysics schemes may not realize that the 
particle shape is hardly ever consistently represented (McFarquhar and Black 2005) for 
collection, vapor deposition, etc. 

The specific species included in the new parameterization are discussed in Section 2, the 
foundational equations used in the parameterization in Section 3, the representation of various 
microphysical processes in the new parameterization in section 4, and the summary in section 5. 
 
2.  Hydrometeor species included in the new three-moment hybrid bulk/bin scheme 
 

The liquid hydrometeors discussed in this parameterization are cloud water CW 
(typically range from 0-82 microns in diameter), drizzle DZ (typically range from 82-500 
microns), and warm rain RW (typically range from 500-8000 microns).  In addition to warm 
rainwater there are big drops BD that from nearly or completely melted hail, melt rainwater MW 
from melted snow aggregates, graupels, and frozen drops, and shed rainwater DW from melting 
hail from graupel and hail from frozen drops.  In traditional bulk schemes, these all would be 
combined with warm rainwater into a single rainwater category.  However, by separating these 
species, one can additionally obtain some history of the microphysics processes that are 
occurring.  For instance, one can determine what fraction of rain reaching the ground resulted 
from melting of various species of ice versus other processes. 

Another feature of the liquid water aspect of the proposed model is the inclusion of 
drizzle, which owes to the difference in sizes between cloud droplets and rainwater.   Most 
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models, except for perhaps the CSU-RAMS model, do not have an intermediate size particle size 
for liquid water between cloud drops and raindrops.  The CSU-RAMS model does in a way in 
that it has large cloud drops of 50-100 micrometers, which, however, is different than this model 
that uses a true drizzle category.  The large cloud drops are used for growth on ultra giant cloud 
condensation nuclei (CCN) in CSU-RAMS.  If drizzle particles grow larger than 500 microns 
they are transferred into the warm rainwater RW species.   

The general ice water hydrometeors species include ice crystals (13 habits or species), 
snow aggregates SW, frozen drizzle FZ, three graupel categories GL, GM, and GH, frozen 
raindrops FW, and four hail categories HG, HF, HS, HW.  The 13 crystal habits are frozen cloud 
droplet CZ (produced by homogeneous freezing at temperatures between -30 °C and -50 °C; 
Demott et al. 1994) bullet rosettes BR, columns CN, hollow columns HC, dendrites DN, needles 
ND, plates PL, sectors SC, side planes SP, column crystals with plate growth CP (i.e., capped 
columns), column crystals with dendrite growth CD, dendrites with plate growth DP, and plates 
with dendrite growth PD.  The existence of cloud droplets at quantities of 1x10-6 kg/kg is used to 
indicate supersaturation with respect to liquid water.  It will be discussed below that because 
rime mass and deposition mass are both predicted for each of these crystal habits and larger ice 
species, the actual shape and fallspeed is allowed to change from the “pristine” conditions that 
they are initialized as.   

Frozen drizzle FZ particles (mean density of 900 kg m-3) result from the freezing of 
drizzle and either fall out or become graupel or frozen drops embryos.  Frozen drops FW (mean 
density of 900 kg m-3) result from the freezing of any of the rainwater species by assuming that 
there are ice nuclei in the water drops.  Not enough information exists to consider other types of 
freezing such as raindrop breakup and other phenomena (Cotton 1972b).  There are three graupel 
species based on density.  The graupel species are low-density graupel GL (mean density of 200 
kg m-3), medium-density graupel GM (mean density of 400 kg m-3), and high-density graupel 
GH (mean density of 600 kg m-3).  As each of these species has a particular drag coefficient and 
different densities, each has a particular terminal velocity for a given size.  This influences the 
differential sedimentation of the various graupel species (see Straka and Mansell 2005), as well 
as the riming densities of the graupel species, the latter of which is a function of terminal 
velocity, cloud droplet size and temperature. 
 Finally there are the four hail species.  These include hail from graupel HG (mean density 
of 700 kg m-3), and hail from frozen drops HF (mean density of 900 kg m-3).  These two species 
have size ranges from 9-19 mm and are considered to represent small to marginally severe 
hailstone sizes.  Then there are the two large hailstone species, including large solid hail HW 
(mean density of 900 kg m-3), and large spongy hail HS (mean density of 900 kg m-3).  These 
two species have size ranges of 19-51 mm that meet criteria for severe to very severe hail. 
 
3.  Equations in the new microphysical scheme 
There are three prognostic variables related to three different moments predicted in this model.  
These are total number concentration, mixing ratio, and reflectivity, which are related to the 
zeroth, third and sixth moments, respectively.   The purpose of using three different moments is 
to be able to diagnose the shape parameter at each grid point for each hydrometeor species 
following MY05a, b as explained in the next section.  This adds greater freedom for the model to 
represent real cloud processes that might occur in the atmosphere as shown in solutions of tests 
compared to analytical solutions and other comparisons by MY05a, b.  They show that the best 
solutions among single-, double-, and triple-moment schemes are obtained by using a set of 
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predictive equations for these moments.  Also predicted are the rime collected, vapor deposited 
as ice, the mean cloud water to which a particle is exposed, and the time of exposure or parcel 
age (Straka and Rasmussen 1997).  Predicting this age helps improve autoconversion rate 
accuracies as suggested by Cotton (1972) and Straka and Mansell (2005).  Separate prediction of 
rime and vapor deposition for ice is done significantly differently than, but in the same spirit as, 
that shown in Morrison and Grabowski (2008). 

The collection of these prognostic equations are given in terms of their symbols, 
respectively, which are total number concentration NT,m, mixing ratio Qm, reflectivity Zm, liquid 
water on larger ice particles Ql ,m, rime collected Qr,m, vapor deposited as ice Qd,m, the mean 
cloud water to which a particle is exposed Qcw,m , and parcel age τm used to find Qcw,m .  Note the 
terminal velocity is Vt,Q  or  Vt,N and the mixing coefficient is Kh. 

∂NT ,m

∂t
= −ui

∂NT ,m

∂x j
+

∂
∂xi

Kh

∂NT ,m

∂xi

⎛
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⎞
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+
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∂x3
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 ∂Qm
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1
ρ
∂ρuiQm

∂x j
+
Qm

ρ
∂ρui
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∂
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ρKh
∂Qm
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⎛
⎝⎜

⎞
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+
1
ρ
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⎛
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⎞
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where the subscript m is the hydrometeor species index, t is time, xi or xj are the Cartesian 
directions, ui are the Cartesian velocities, and ρ is the density of air.  The S terms are the source 
and sink terms summarized in section 2 below.   
 
a.  Hydrometeor related power laws and constants and variables  
In this model the mass, terminal velocity, and density are all written as power laws with regard to 
diameter and are given, respectively asMx Dx( ) = axDx

bx , Vt ,x Dx( ) = cxDx
dx ,

 
ρx Dx( ) = exDx

fx ,with 
constants ax through fx for each hydrometeor species denoted by subscript x provided in Table 1 
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as mentioned above.  In addition ice crystal diameter and thickness are described using
 Dx = gxM Dx( )hx ,

 
and ,  H Dx( )= ixDx

jx .  

 
b.  Number spectral density function and some derived variables 
A modified gamma distribution (two shape parameters νx and µx) noted by Flatau et al. (1989), 
and used by Cohard and Pinty (2000), and probably others in various forms, is employed, 

 n Dx( ) = µxNTx

Γ(ν x )
Dx

Dn,x

⎛

⎝⎜
⎞

⎠⎟

µx vx −1 1
Dn,x

exp −
Dx
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⎛
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⎞
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µx⎛

⎝
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⎞

⎠
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.     (9)  

where µx is the breadth parameter for species X, NTx is the number concentration, and the gamma 
function is Γ, and the shape parameter is νx.  

The definition of the zeroth-moment given as 

 NT ,x  =  n Dx( )  dDx
0

∞

∫ ,        (10) 

where a general solution is possible in terms of partial gamma functions and the complete 
gamma function if Dmin= 0 and Dmax= ∞.   
From the third-moment,  

 Q =
Dn,x
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⎛
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,  (11) 

the characteristic diameter, Dn can be found from,  

 Qx =
µxaxNT ,xΓ vx( )
ρΓ bx + vxµx

µx

⎛
⎝⎜

⎞
⎠⎟

Dbx
n,x ,        (12) 

where ax and bx are constants and Dn,x is given by 

 Dn,x =
ρoQxΓ

bx + vxµx

µx

⎛
⎝⎜

⎞
⎠⎟

µxaxNt ,xΓ vx( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1/bx( )

.         (13) 

Finally, the mean volume diameter for spheres Dmass_vol,x, is given by  

Dmean vol,x =  
6Qx D( )ρ

πρx D( )Nt ,x D( )
⎛

⎝⎜
⎞

⎠⎟

1/3

.       (14a) 

On the other hand, the mean volume diameter for ice crystals and snow is given by the 
following, where c is the thickness (prism plane) and a is the radius of the width (basal plane), 

Dmean vol,x =  ca2( )1/3
.         (14b) 

c.  Diagnosis of the shape parameter 
The equation for the prediction of reflectivity, dZx/dt, is given in a different form so as to make it 
possible to diagnose the shape parameter vx from G(vx) (note, µx is not included in this equation 
as at this time it is always set to 1),    
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dZx

dt
=
G vx( )
ax
2 ρ2 2 Qx

NT ,x

dQx

dt
−

Qx

NT ,x

⎛
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⎞

⎠⎟

2
dNT ,x

dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     (15) 

from which νx can be diagnosed.  This form of the equation is used in association with 
collection, diffusion, and melting processes.  The second kind of source for reflectivity is one 
such as nucleation where 

dZx

dt
= −G vx( ) ρ

ax

⎛
⎝⎜

⎞
⎠⎟

2 dQy

dt
⎛
⎝⎜

⎞
⎠⎟

2 dNT ,x

dt
⎛
⎝⎜

⎞
⎠⎟
−1

.      (16) 

The last kind of source occurs when one habit becomes another such as Bigg freezing, where 
drizzle freezes into frozen drizzle or rain freezes into frozen drops, 

dZx

dt
= −

ρx

ρy

⎛

⎝⎜
⎞

⎠⎟

2
dZy

dt
.         (17) 

The reflectivity can be written as, 

Zx =
5 + vx( ) 4 + vx( ) 3+ vx( )
2 + vx( ) 1+ vx( ) vx( )

ρQx( )
ax
2NT ,x

,      (18) 

from which G(vx) can now be defined as, 

 G ν x( ) = (5 + ν x )(4 + ν x )(3+ ν x )
(2 + ν x )(1+ ν x )(ν x )

.       (19)  

The expression G(νx) is found after the sum of many iterations with an x = g(x), bisection, linear 
interpolation, or some other iteration scheme.  For efficiency, the use of several lower-order 
polynomials for various ranges of νx, as used by MY05a,b, can be attempted. 
 
d.  Hybrid-bulk/bin algorithm 
At the beginning of a time step, with the hybrid-bulk/bin-parameterization, a bulk-
parameterization spectrum of particles assuming a two-parameter gamma distribution is 
transformed into bin-parameterization space.  Next, the physical processes can be computed in 
the bin-parameterization space.  Then sedimentation fluxes are calculated appropriately for each 
bin.  The bin-parameterization solutions are summed together to produce a new bulk-
parameterization spectrum using the two-parameter gamma distribution (a hybrid-bulk/bin 
parameterization distribution) with a consistent shape parameter.   

The diameters Dx of the particles involved in any microphysical process are defined to 
exponentially increase in size according to the following for 48 (or any number) bins sizes as 
follows,  

Dx = Dmin exp
l −1[ ]
xjo

⎛
⎝⎜

⎞
⎠⎟
for l = 1,nl ,        (20) 

where Dmin = 5 microns, l is an index number for the bin, nl is the number of bins, and xjo = 4.5.   
The next step is demonstrated for number concentration using (9) to transform the bulk-

parameterization spectra into bin-parameterization space, and stored in terms of Dn, 

Nx Dx( ) = nx Dx( )dDx =
µxNT ,x

Γ(ν x )
1
Dn,x

Dx

Dn,x

⎛

⎝⎜
⎞

⎠⎟

vxµx −1

exp −
Dx

Dn,x

⎡

⎣
⎢

⎤

⎦
⎥

µx⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
dDx ,  (21) 
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which for one discretized bin in bin-parameterization space becomes,   

Nx Dx i( )( ) = nx Dx i( )( )ΔDx =
µxNT ,x

Γ ν x( )
1
Dn,x

Dx i( )
Dn,x

⎛

⎝⎜
⎞

⎠⎟

vxµx −1

exp −
Dx i( )
Dn,x

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟
Dx i( )
jo

  (22)  

where jo = 4.5 is a variable that controls the spacing of the bins.  The values of   

ΔDx i( ) =
Dx i( )
jo

          (23) 

are used in (22) for number concentration over size interval Dx to Dx+ΔDx (Farley and Orville 
1986; Farley 1987).  For the hybrid bulk/bin-parameterization, the initial mixing ratio can be 
defined in terms of number concentration for a bin summed over the interval describing a single 
bin, 

Qx i( ) =
Nx i( )mx i( )

ρ
,         (24) 

where Qx(i) is the mixing ratio of bin number i, and ρ   is the density of air.  To transform back to 
bulk-parameterization space from the bin-parameterization space with the hybrid bulk/bin 
parameterization, Nx, Qx, and Zx are written as the sum of bins of number concentration Nx(Dx(i)) 
and mixing ratio Qx(i).  For example, the transformation equation from bin space to bulk 
parameter space for total number concentration is found from (24), 

NT ,x = nx Dx i( )( )ΔDx
i
∑ =

µxNT ,x

Γ(ν x )
1
Dn,x

Dx i( )
Dn,x

⎛

⎝⎜
⎞

⎠⎟

vxµx −1

exp −
Dx i( )
Dn,x

⎡

⎣
⎢

⎤

⎦
⎥

µx⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
Dx i( )
joi

∑ .  (25) 

It should be noted that a two-moment version of the hybrid bulk/bin parameterization 
scheme modified from Feingold et al. (1998) is being used in the CSU-RAMS-2001 model as 
described by Cotton et al. (2003) and for riming of ice crystals by Saleeby and Cotton (2008).  
After all calculations are made in bin-parameterization space, they are summed using a one 
parameter gamma distribution similar to that given above to transform back to bulk-
parameterization space. 
4.  Representation of microphysical processes 
a.  Cloud, drizzle, and rain formation 
 

1) AEROSOLS AS NUCLEATION AGENTS FOR CLOUD DROPLET NUCLEATION 
 
With a more detailed hybrid-bulk/bin-parameterization model, it seems appropriate to do away 
with saturation adjustment schemes that have been used by Tao et al. (1989), Cohard and Pinty 
(2000), Gilmore et al. (2004a), Straka and Mansell (2005), and Siefert and Beheng (2006) as 
well as most other models.  However, we have found that the model with explicit 
condensation/evaporation of cloud drops (and deposition and sublimation of ice crystals) is 
nearly identical to the Tao et al. (1989) saturation adjustment scheme solution without having to 
resort to many small time-steps to integrate the diffusion equation.   

A maximum supersaturation can be expressed (Cohard and Pinty 2000) by 

Sv,W max
k+2

2F1 µ, k
2
, k
2
+
3
2
;−βSv,W max

2⎛
⎝⎜

⎞
⎠⎟
= ρL

ψ 1W( )3/2

2kcπρwψ 2G
3/2B k

2
, 3
2

⎛
⎝⎜

⎞
⎠⎟

.   (26) 

where the following are defined as,  
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ψ 1 T ,P( ) = g
RdT

εLv
cpT

−1
⎛

⎝⎜
⎞

⎠⎟
 ,          (27)  

ψ 2 T ,P( ) = p
εes T( ) +

εLv
2

RdT
2cp

⎛

⎝⎜
⎞

⎠⎟
,         (28)  

G T ,P( ) = 1
ρL

RvT
ψ es T( ) +

Lv
kaT

Lv
RvT

−1
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

−1

,       (29)  

where c, k, β and µ are the four activation spectrum coefficients (Cohard et al. 1998).  The 
functions 2F1 and B are Gauss’ Hypergeometric function and the Beta function, respectively.  
Then a value for activated NCCN can be obtained (Cohard et al. 1998) using an iteration technique 
(Cohard and Pinty 2000), 

NCCN = cSv,W max
k

2F1 µ, k
2
, k
2
+1;−βSv,W max

2⎛
⎝⎜

⎞
⎠⎟

        (30) 

This equation has different values of c and k than Twomey’s (1964) expression.  The utility of 
(30) has been discussed by Cohard et al. (1998) as having four activation coefficients, which can 
express various aspects of aerosols that are involved in the nucleation of cloud droplets.  This 
makes it possible to include the some of the aspects of activation size spectrums, chemical 
compositions, and solubility into the equation for heterogeneous nucleation (30) of aerosols into 
cloud drops.  The maximum number of cloud droplets that can be nucleated is 1.5x109 m-3.   
 

2) AUTOCONVERSION OF CLOUD DROPLETS TO DRIZZLE AND DRIZZLE TO WARM 
RAINWATER 

As mentioned in the introduction, the separate drizzle category allows for the calculated number 
concentration rate of drizzle particles to be used directly and we do not have the problem of 
“artificially seeding” mature rain distributions later in a cloud simulation (artificially reducing 
the mean size of particles) and therefore it is not necessary to impose the size-preserving rain 
number concentration formulas of Carrio and Nicolini (1999) or Milbrandt and Yau (2005b).  

Though hardly used any more, the Kovetz and Olund (1969) quasi-stochastic collection 
scheme is a simple, efficient, and mass-conserving interpolation method to study the collision-
coalescence of particles.  This scheme is similar to many others in that it only approximates the 
stochastic collection equation (Scott and Levin 1975).  Although newer modern schemes are less 
diffusive (e.g., Tzvion et al. 1987), the Kovetz and Olund (1969) scheme is somewhat desirable 
as it is simple, efficient, and works well for cloud-to-drizzle autoconversion.  More accurate 
methods probably will be incorporated into the current model in the future. 

Cloud droplets enter the drizzle spectrum at 82 micrometers and the rain spectrum at 500 
micrometers after sufficient broadening of the drizzle distribution.  It has been show in our own 
tests and by Scott and Levin (1975) that the Kovetz and Olund (1969) scheme is able to 
reproduce these rough diameter limits.  The approximate quasi-stochastic collection equation 
used by Kovetz and Olund (1969) is written such that 

NT ri ,t + Δt( ) = NT ri ,t( ) + B n,m,i( )
m=n+1

i

∑ P n,m( )NT rn ,t( )NT rm ,t( )
n=1

i−1

∑

− P i,n( )NT ri ,t( )NT rn ,t( )
n=1

M

∑
,  (31) 
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where P(n, m) is the coalescence probability for particles with radii rn and rm.  The term B is an 
exchange coefficient to move particles from one bin to another and is given by, 

B n,m,i( ) =
rn
3 + rm

3 − ri−1
3( ) / ri3 − ri−13( )

ri+1
3 − rn

3 − rm
3( ) / ri+13 − ri

3( )
0

for ri−1
3 ≤ rn

3 + rm
3 ≤ ri

3

for ri
3 ≤ rn

3 + rm
3 ≤ ri+1

3

for rn
3 + rm

3 ≤ ri−1
3

or ri+1
3 < rn

3 + rm
3

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

.   (32) 

This parameterization for B(n, m, i) conserves the mass of total water.   
A brief illustration which compares the size distributions of the Kovetz and Olund (1969) 

scheme to Golovin’s analytical solution and the Berry and Reinhardt (1974a,b) scheme is given 
below in Fig. (2) from Scott and Levin (1975, their Fig.7.9).  They claim that the Kovetz and 
Olund (1969) solutions are not prohibitively erroneous and that neither the Kovetz and Olund, 
nor the Berry and Reinhardt scheme are perfect at representing the true quasi-stochastic 
collection process.  In the first example, Golovin’s analytical solution is compared to the Kovetz 
and Olund scheme.  The peaks in the Kovetz and Olund scheme are slightly lower than with 
Golovin’s solution, whereas, the tails at large sizes are very slightly longer indicating the known 
spreading of the particle spectrum by the Kovetz and Olund scheme.  In the comparison with the 
Berry and Reinhardt (1974) scheme, which, however, conserves no moments, there is a larger 
difference between the solutions, with shallower peaks for the Kovetz and Olund (1969) scheme 
and more prominent undesirable spreading at 600 and 1200 seconds at the large drop tails. 
 
b.  Cloud ice formation 
 1)  CRYSTAL NUCLEATION 
As done by Seifert and Beheng (2005; SB05), the ice nucleation follows Reisner et al (1998) and 
various other authors.  The model is used to make a number concentration prediction as follows  

∂Nt .I

∂t
=
max

Nt , IN − Nt , I( )
Δt

,0
⎡

⎣
⎢

⎤

⎦
⎥

otherwise zero

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

       (33) 

where Nt,IN = 0.001exp(-0.639 + 12.96SI).  Reisner et al. (1998) limited the value of Nt,IN by 10 
times the result from the following equation given as Nt,IN = 0.01 x exp(-min(T,246.15)-273.15), 
which owes to Fletcher (1962).  They state there is an instability problem with the Meyers et al. 
(1992) scheme at very cold temperatures.  The maximum number of ice crystal concentration 
herein is arbitrarily limited to the same number as the maximum number of cloud drops 
permitted, which as stated above as 1.5x109 m-3.    
 
 2)  HOMOGENEOUS FREEZING OF CLOUD DROPLETS  
The number of cloud droplets that homogeneously freeze into frozen cloud drops in time Δt  
below  T = –30 °C and T =-50 °C  for each bin, is given as 
 ΔN Di( ) freeze = 1− exp −JlsV Di( )Δt( )⎡⎣ ⎤⎦ncw Di( )ΔDi ,     (34) 
where Jls = Jls0 , Jls0  is the homogeneous freezing nucleation rate of pure water, and V(D) is the 
droplet volume for each bin associated with diameter D and width ∆D.  This Jls0  was 
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approximated in Demott et al. (1994) with work from Heymsfield and Sabin (1989) and 
Heymsfield and Milosevich (1993) as, 
log10 Jls0( ) = −606.3952 − 52.6611Tc −1.7439Tc

2 − 2.65 ×10−2Tc
3 −1.536 ×10−4Tc

4   (35) 
with units cm–3 s–1 and is noted by Demott et al. (1994) to be a good approximation between 
–30°C ≥ T (°C) ≥ –50°C .  The total rate summed over the binned distribution is then given by 

 NFZx =
ΔN freeze Di( )

i=1

48

∑
Δt

 and         (36) 

QFZx =

1
ρ

π
6
ρliqDi

3ΔN Di( ) freeze
i=1

48

∑
Δt

       (37) 

For temperatures colder than –50°C, any remaining cloud droplets freeze.   
 
 3)  PROBABILISTIC FREEZING OF LIQUID WATER DROPS 
The probabilistic freezing of liquid drops forms high-density ice water particles (Bigg 1953; 
Wisner et al. 1972; Lin et al. 1983l Ferrier 1994; and others).  The freezing of liquid drizzle is a 
source for the frozen drizzle category with a density of 900 kg m-3.  Similarly, the freezing of any 
species of rain is a source for frozen rain.  As pointed out by Wisner et al. (1972) laboratory 
experiments suggest that this is perhaps a stochastic process, and a function of the temperature, 
volume of the liquid water particle, and number of ice nuclei that can activated in droplets or 
drops.  Following Bigg (1953) and Wisner et al., an equation for the probability of freezing of a 
drop with volume V’ and temperature T is given as  

ln 1− P( ) = B'Vt exp A' To − T( ) −1⎡⎣ ⎤⎦{ }       (38)  
Following Wisner et al, the following equation for number of drops of diameter D that are frozen 
considering only differentials when only time t and N vary, the following results, 

−
d n(D)dD[ ]

dt
=
πB'ND3

6
exp A' To − T( ) −1⎡⎣ ⎤⎦{ }      (39) 

The number freezing rate for each bin in the distribution is given by,  

NyFZxi = −
dn(Di )
dt

ΔD ,        (40) 

whereas the frozen particles are transferred to the appropriate bin in the frozen drizzle category 
and the unfrozen particles remain in the drizzle category.  The total number of particles frozen 
would be given by  

N f FZL = −
dn D i( )( )

dt
ΔD

i=1

M

∑ ,         (41) 

although this formula is not actually used in the model since each bin is treated separately.  Next 
a mass tendency equation for each bin is simply given as  

QyFZxi = NyFZxi
π
6
D3ρx ,        (42) 

Here, the subscript x represents the liquid drops and y represents frozen drops.  It is noted that 
Thompson et al. (2008) returned to the original Bigg (1953) paper and formulated a freezing rate 
based on the information therein. 
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c.  Collection equations   
For building look-up tables for hybrid bulk/bin models, power-law based terminal velocities 
Vt(Dx) and Vt(Dy) as described in tables (not shown) are used.  In addition, The equations solved 
for various combinations of Dn,x, Dn,x vx ,vy, µx, and µy are given above.  A mixing ratio equation 
can be written as,  

QxACy =

0.25πM Dx( )Ex,yµxµyNT ,xNT ,y Dx + Dy( )2 max Vt ,x −Vt ,y( ),0⎡⎣ ⎤⎦
ρΓ vx( )Γ vy( )

X 1
Dn,x

1
Dn,y

Dx

Dn,x

⎛

⎝⎜
⎞

⎠⎟

µx vx −1 Dy

Dn,y

⎛

⎝⎜
⎞

⎠⎟

µyvy −1

exp −
Dx

Dn,x

⎛

⎝⎜
⎞

⎠⎟

µx⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
exp −

Dy

Dn,y

⎛

⎝⎜
⎞

⎠⎟

µy⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
dDxdDy

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1

48

∑
1

48

∑ ,(43) 

and a number concentration equation can be written as, 

NxACy =

0.25πEx,yµxµyNT ,xNT ,y Dx + Dy( )2 max Vt ,x −Vt ,y( ),0⎡⎣ ⎤⎦
Γ vx( )Γ vy( )

X 1
Dn,x

1
Dn,y

Dx

Dn,x

⎛

⎝⎜
⎞

⎠⎟

µx vx −1 Dy

Dn,y

⎛

⎝⎜
⎞

⎠⎟

µyvy −1

exp −
Dx

Dn,x

⎛

⎝⎜
⎞

⎠⎟

µx⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
exp −

Dy

Dn,y

⎛

⎝⎜
⎞

⎠⎟

µy⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
dDxdDy

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1

48

∑
1

48

∑ . (44) 

These equations are completely general in that they work for both self collection and collection 
between different species. Note that for mixing ratio that an equation for y collecting x is found 
by replacing M(Dx) with M(Dy) and max Vt ,x −Vt ,y( ),0⎡⎣ ⎤⎦ with max Vt ,y −Vt ,x( ),0⎡⎣ ⎤⎦ .  As a result, 
it is possible to get a more accurate estimate of two particles with quasi-similar, spectrum mean 
terminal velocities, than by other methods suggested by Wisner et al. (1973), Murakami (1990), 
Mizuno (1990), or even Verlinde et al. (1993).   
 
 1)  COLLECTION EFFICIENCIES  
All collection efficiencies (Ex,y) between any two species x and y have been parameterized into 
two-dimensional lookup tables with the collector particle on one axis and the collectee particle 
on the other (Cooper et al. 1997; and Wang 2004), with diameters exponentially or otherwise 
spaced, values needed simply are obtained by bi-linear interpolation.  
 

2) RIME STORAGE ON CRYSTALS, SHAPE CHANGES, AND ASSOCIATED VERTICAL 
FLUX ADJUSTMENTS  

In this model, the amount of rime accreted by the ice is prognosed to allow for more realistic 
particle shape and density adjustments.  Because of this, the fall speed for hydrometeors in each 
bin may be adjusted to a more realistic value.  In this version of the model, a simple linear 
interpolation between an assumed ice crystal fall speed with no rime and a fully rimed crystal 
(graupel) is used.  When fully rimed, the particle is converted to a graupel particle.  The fraction 
of rime amount for each particle in a bin is then given by 

Fi = min
Xactual _ rime,i

Xcrit _ rime,i

,1
⎛

⎝⎜
⎞

⎠⎟
         (45) 
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Once the prognosed rime that is stored on each crystal within a bin exceeds the critical threshold 
given by the above formula, then Fi=1 and the low-density graupel fallspeed equation is used for 
the bin.  If there were no rime, then Fi=0 and the particles in the bin would fall as their original 
unrimed state.  The weighting function can be expressed simply as 

VT Di( ) = cx Di( )x
dx 1− Fi( ) + cgraupel Di( )dgraupel Fi .     (46) 

 
g.  Breakup of raindrops  
The breakup of rain drops plays an important role in describing the hydrometeor distribution in 
the real atmosphere and can lead to the so called Marshall-Palmer distribution or negative-
exponent distribution in the mean over time.  However, two to four modes in the distribution can 
develop in as little as five to ten min owing to break up by particles 0.5 to 2 mm in diameter 
colliding with larger particles.  The most common type of breakup is near head on collisions 
producing sheet breakups, followed by filament breakups, disk breakups, and bag breakups (Low 
and List 1982).  Aerodynamic breakup is rare (RY89, PK97) as few if any drops ever get large 
enough for this mechanism to operate.  Presently, it is not known how to easily model the 
distribution modes owing to these types of breakup in a bulk parameterization model.  Therefore, 
we follow the simple formulation by Verlinde and Cotton (1993) to describe the breakup.  For 
warm rain as large as 5mm and for melting frozen drops, melting graupel, etc, up to 9 mm this 
parameterization does not always perform in a meaningful fashion.  This parameterization limits 
the value of Dmean_vol to around 900 microns, and does so based on adjusting the collection 
efficiency for distributions with Dmean_vol > 600 microns.  The application of the parameterization 
is an adjustment to the collection efficiency in the self –collection calculation.  The efficiency 
used to modify the self-collection equations is given by 

Exx =
1       Dmr < 900microns 

2 − exp 2300 Dmr − Dcut[ ]( ) Dmr > 900microns      
⎧
⎨
⎪

⎩⎪
   (47) 

For example, Ex,x= 1.0 for Dm,x < 6x10-4 m, then as the mean drop size increases, Ex,x decreases to 
0.0 at Dm,x = 9x10-4 m.  At sizes larger than 9x10-4 m the efficiency exponentially becomes more 
negative implying quick breakup.   For example, with Dm,x = 1x10-3 m E x,x = -0.51, with Dm,x = 
1.1x10-3 Ex,x = -1.16, with Dm,x = 1.2x10-3 Ex,x = -1.97.  These numbers show the quick breakup 
of large drops and produce a number concentration source for rain.  Breakup of particles other 
than rain is not permitted.  Melting aggregates that are to a large extent liquid (> 50 %) might 
break up too, but these particles become redefined as melt rain in the model and then breakup 
can occur if they are large enough. 
 
h.  Vapor diffusion  
Vapor diffusion of a water particle is based on the sub- or super-saturation of a particle relative 
to its environment, along with its phase, shape, size, and a variable that is a function of 
temperature and pressure.  The vapor diffusion of liquid water particles is called evaporation and 
condensation and can occur at temperatures both above and below 273.15K. A saturation 
adjustment is used for vapor condensation/evaporation of cloud droplets and ice crystals.  It is 
the mode for evaporation of all other liquid water particles and sublimation for ice particles.   
 
 1)  LARGER LIQUID PARTICLES 
For liquid particles, the basic equation that is solved for evaporation and condensation is based 
on a modification of Byers (1965), 
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dM (D)
dt

=
2πD Sl −1( )Fv
Lv
2

KaRvT
2 +

1
ρψQsl

⎡

⎣
⎢

⎤

⎦
⎥

,       (48) 

where is the ventilation coefficient Fv is given by 
 Fv = 0.78 + 0.308Sc

1/3Re
1/2( )   for  Sc

1/3Re
1/2( )  > 1.4 (larger particles)   (49a) 

 Fv = 1.0 + 0.108 Sc
1/3Re

1/2( )2( )  for Sc
1/3Re

1/2( )  < 1.4 (smaller particles)   (49b) 

The values condensation and evaporation are given as  
 QxCDv = max(QxCEv ,0.0) ,        (50) 
and 
 QxEVv = min(QxCEv ,0.0) .          (51) 
For condensation on or evaporation of melting ice and snow aggregates the value of Qsl is given 
by that at 273.15K and Sl is computed from this value and that of Qv.  With number 
concentration, the evaporation of liquid drops is given by (52-56).  Note that there is no number 
change for evaporation from melting ice and condensation.  To accommodate the mass transfer 
with mass gain and loss owing to vapor diffusion and melting processes, the constraint is that the 
mass must be conserved as expressed by, 

 n(M )dM = constant
0

∞

∫ ,        (52)  

where accommodations need to be made for complete evaporation or melting.  The general form 
of the vapor diffusion gain and loss transfer equation is given as, 

 ∂n(M )
∂t

= −
∂
∂M

n(M ) dM
dt

⎡
⎣⎢

⎤
⎦⎥

.        (55)  

where, n(M) is the number of particles of mass M.  One of the most commonly used schemes in 
the 1970’s was the Kovetz and Olund (1969) scheme.  Generally, the starting place is to compute 
the diffusion growth dM/dt .  Then, the following can be written using index J to indicate the bin 
to which a droplet belongs, and the mass of droplets M(J) within that bin to predict an 
intermediate value of M,  

 ′M (J ) = M (J ) + Δt dM
dt

⎛
⎝⎜

⎞
⎠⎟ J

.        (56)  

The new n(J) at t = τ +1 is computed from the latest n*(J) by 

 n∗∗ J( ) = R J, ′J( )
′J

J

∑ n∗ ′J( ) ,        (57) 

with R J, ′J( ) defined by, 

 R J, ′J( ) =

′M J( ) − M (J −1)
M J( ) − M (J −1) for M J −1( ) < ′M J( ) < M J( )

M J +1( ) − ′M (J )
M J +1( ) − M (J ) for M J( ) < ′M J( ) < M J +1( )

0 for all other  cases

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

.  (58) 
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Note that number concentration remains constant during condensational growth, and is lost only 
through the smallest category during evaporation. 
 
 2)  LARGER ICE PARTICLES   
Vapor diffusion of an ice water particle is based on the sub- or super-saturation of a particle 
relative to its environment, along with its phase, shape, size, and a variable that is a function of 
temperature and pressure.  The vapor diffusion of ice water particles, which can include 
sublimation and deposition that can occur at temperatures that are only below 273.15K.  The 
basic equation that is solved is 

 
dM (D)
dt

=
4πC Si −1( )Fv
Ls
2

KaRvT
2 +

1
ρψQsi

⎡

⎣
⎢

⎤

⎦
⎥

,        (59) 

where C is the capacitance using the electrostatic analog (PK97), and the ventilation coefficient 
for snow aggregates (Rutledge and Hobbs 1984) is  
 Fv = 0.65 + 0.44Sc

1/3Re
1/2( ) .        (60) 

Ventilation coefficients for ice crystals are given in Table 2.  Equations similar to those for larger 
water drops are used for frozen drizzle, graupel, frozen rain, and hail.  Note that deposition and 
sublimation are written as 
 QxDPv = max(QxDSv ,0.0),         (61) 
and 
 QxSBv = min(QxDSv ,0.0),         (62) 
and again the number concentration change during sublimation is (there is no number 
concentration change for deposition) is given by the number of particles that completely sublime. 
The sublimation and deposition of ice crystals is based on whether the particle is columnar or 
plate like using the particles capacitance analog (Harrington et al. 1995; and PK97).  The 
capacitance is given for plate and dendrite like crystals as 
 Cdisk = D/π          (63) 
for column and bullet like crystals as  

 Cprolate =
A

ln a + A( ) / b( ) , where A = a2 − b2( )1/2      (64) 

with a and b being the radii of a prolate spheroid, and for spheres C is given as 
 Cspheres = D/2.           (65) 
 
i.  Melting   
Melting involves three processes, including thermal conduction, vapor diffusion, and sensible 
heat transfer.  These are all incorporated in (66), which is from the heat budget equation for a 
sperical ice water particle.  Thus, the melting equation is written as 

∂M (Dx )
∂t

= −
2πDxNt ,x Ka T − To( ) + ρoψ Lv qv − qs,o( )⎡⎣ ⎤⎦Fv

Lf

−
CL T − To( )

Lf

dM (Dx )
dt

⎛
⎝⎜

⎞
⎠⎟

x ACL

, (66) 

with  
QxMLm = min(QxMLm ,0.0)          (67) 
The number concentration change owing to melting is given by the number of particles that 
totally melt in a time step as with vapor diffusion (52-56).  
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5.  Summary 
In this paper, a new microphysical parameterization is proposed.  This version is complete for 
warm rain processes, for ice crystal nucleation and growth and for snow aggregate formation.  In 
addition, it includes a description on the inclusion of three densities of graupel, frozen drops, hail 
from graupel, hail from frozen drops, spongy hail and very large hail and rain species associated 
with the melting of these.  Some of the highlights of the microphysics parameterization as 
presented in this paper include the following: 

•  Hybrid-bulk/bin microphysics calculations including nucleation, diffusion, collection, 
autoconversion, conversions, freezing, melting, 

•  Prediction of one-, two-, or three-moments including liquid or ice water content (third-
moment), number concentration (zeroth-moment), and reflectivity (sixth-moment), 
for each hydrometeor species, 

•  Shape parameter diagnosis from the three-moments mentioned in the bullet above, 
•  Drizzle as a separate hydrometeor species between cloud droplets and warm rain, 
•  Nine species or habits of ice crystals, plus four mixed species or habits of ice crystals, 
•  Frozen drizzle, snow aggregates, three densities of graupel, frozen drops, and four hail 

species to track origins (from graupel or frozen drops) and size (9-19mm and 19-
51mm). 

Some important improvements to be made in the very near future include: 
•  Inclusion of a liquid water storage term on/in ice structures, 
• Improve the prediction of median drop size of shed of liquid drops from larger ice (hail) 

when melting or growing in a wet growth mode (Rasmussen and Heymsfield 1987), 
• Use of growth rate equations for ‘a’ and ‘c’ axes of ice crystals to determine the ice 

crystal species that grow most rapidly / most slowly for a given temperature and 
supersaturation with respect to ice (Takahashi et al. 1991),   

•  Use of more accurate equations to define dM(D)/dt for large ice particles with various 
Reynolds number distributions (Rasmussen and Heymsfield (1987), 

•  Use of newer more consistent diameters, lengths, densities and volumes of ice crystals 
and snow aggregates, 

•  Use of more accurate melting physics parameterizations for snow aggregate (e.g., 
Szyrmer et al. 1999 and Heyraud et al. 2008), 

•  Addition of a more accurate quasi-stochastic equation may need to be used, such as that 
by Tzivion et al. (1987), for the autoconversion parameterizations.   

In future papers, results will be presented from comparisons of numerical simulations of 
orographic and lake snows as well as deep convection with in-situ observations from aircraft and 
platforms on the ground, as well as from remote observations using polarimetric radar.   
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