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Abstract 

 
In the present work a continuous turbulent stably stratified channel flow is studied with a direct numerical 
simulation model and with a simple similarity model. With DNS, the flow is simulated without the need of a specific 
turbulence closure model, whereas the local similarity model is based on a simple parameterization of turbulence. A 
relatively low Reynolds flow is simulated and both models explicitly account for molecular flux contributions. The 
flow configuration is identical to a study by Nieuwstadt. In spite of their different nature, both models give 
comparable results on the evolution of the mean and the flux profiles. Inspired by this the DNS results were used to 
calculate flux-profile relationships. The dimensionless gradients of wind and temperature from our DNS show 

strong evidence for log-linear behaviour close to the traditional Λ+= zHM 51,φ over the range of analysis 

( 40 <Λ< z ). This suggest that in an idealistic stationary and homogeneous flow, log-linear behaviour remains 

valid for strong stability. On the other hand, the current analysis is based on low Reynolds number flow and the 
sensitivity of the results on Re deserves more attention in future work.  
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1 Introduction 

 

For many purposes related to meteorology and climate a proper understanding of the boundary 
layer processes in stably stratified conditions is essential (Beljaars and Viterbo, 1998). In spite of 
its importance, a true general framework of the stable boundary layer (SBL) is still lacking. In 
absence of a framework, it appears useful to classify stable boundary layers into two major 
prototypes (Mahrt et al., 1998): 

• The Weakly Stable Boundary Layer (WSBL) 

• The Very Stable Boundary Layer (VSBL) 

Weakly stable boundary layers are characterized by the presence of continuous turbulence and 
tend to occur in windy and/or cloudy conditions. This type of boundary layer is generally rather 
well-understood and both fluxes and profiles more or less obey the local similarity scaling as 
formulated by Nieuwstadt (1984). Therefore, for most practical modeling applications our 
representations of the WSBL are acceptable to some degree (Galmarini et al., 1998; Basu et al, 
2006; Sorbjan, 2006; Steeneveld et al., 2006).  
 
In contrast the very stable boundary layer is poorly understood. This type of boundary layer is 
characterized by the occurrence of turbulence that is discontinuous in time (intermittent) and 
usually rather weak or virtually absent. In the latter case we may speak of a so-called radiative 
SBL, due to the fact that, in the absence of turbulent heat transport, radiation and soil heat 
conduction are the dominant thermodynamic processes (Van de Wiel et al. 2003). Even though a 
complete picture of the VSBL does not exist, considerable effort has been made in recent years 
to characterize important features of the SBL under strongly stratified conditions. Especially, 
extensive field campaigns such as CASES99 (Poulos, 2002) facilitated detailed characterization 
of e.g.:  drainage flow, (Mahrt et al., 2001), low-level jet formation (Banta, 2007), intermittent 
turbulent events and flow instabilities (Sun et al., 2003; Newsome and Banta, 2002, Van de Wiel 
et al., 2003), longwave radiative divergence (Sun et al., 2003) and soil heat transport (Van de 
Wiel et al., 2003 -App. A). 
Although the aforementioned classification into WSBL and VSBL is a useful concept, a formal 
physical criterion for existence of different SBL regimes does not exist. It is not clear why and 
when turbulence in the WSBL ‘gives up’ and loses its continuous character, and it seems that the 
transition of the WSLB to the VSBL is one of the key-standing challenges in boundary layer 
meteorology (Nappo and Johanssson, 1999; Derbyshire, 1999a).  
 
A new perspective to this problem was given by McNider et al. (1995). By analyzing a truncated 
model of the SBL they showed that regime transitions (from WSBL to VSBL), are a natural 
consequence of the non-linearity in the diffusion terms of the governing equations. Intuitively, 
this nonlinear response can be appreciated from basic gradient thinking (Malhi, 1995, Van de 
Wiel et al. 2007, Basu et al. 2007): 

- In case of weak stratification a sudden increase in the vertical temperature gradient 
generally causes a larger downward heat flux, which opposes the disturbance 
(negative feedback). Turbulence is able to maintain its continuous character.  

- In case of strong stratification, a sudden increase in the vertical temperature gradient 
causes a significant decrease of the turbulent diffusivity, which may lead to a smaller 
flux so that the disturbance is enhanced (positive feedback). In this case turbulence 
tends to collapse. 



 
In Derbyshire (1999b from now on: D99b) an analysis similar to McNider et al. (1995) is 
performed, but with a more realistic type of model, resembling typical weather forecast models 
with respect to its stable boundary layer parameterizations. Intriguing results are shown in a 
sense that model instability depends on both the turbulent parameterizations and on land surface 
characteristics. Moreover, from theoretical analysis on linear wind and temperature profiles, 
D99b suggested that this instability is a true physical, hydrodynamic instability. An innovative 
aspect in the analysis is that he performed linear stability analyses (LSA) on heavily 

parameterized equations. To appreciate this, it is important to realize that in a classical sense, 
LSA is applied to exact solutions of the equations of motion (Nieuwstadt, 1992). For example: 
linear perturbations of the inviscid Boussinesq equations in stably stratified flow are governed by 
the well-known Taylor-Goldstein equation. From this, Miles (1961) and Howard (1961) showed 

that a necessary condition for instability of a linearly stratified flow is 41<Ri . This criterion is 

generally used as a predictor for the transition from stably stratified laminar to turbulent flow.  
It is tempting to apply the theory of hydrodynamic stability also to the reverse problem: 
predicting collapse of a turbulent stratified flow towards a laminar state (~from WSBL to 
VSBL). However, this is not straightforward, as closed-form analytical solutions of the turbulent 
reference state, needed to impose perturbations on, are generally unavailable.  
 
The problem is circumvented by analyzing a parameterized set of equations for the turbulence. 
Of course the success of the method mainly depends on the validity of the parameterization 
itself. Unfortunately, the linear profiles in D99b are rather unrealistic for the atmospheric SBL, 
where profiles become logarithmic close to the surface. Therefore, Van de Wiel et al. (2007) 
extended the work of D99b to realistic profiles. They analyzed the hydrodynamic stability of log-
linear profiles in a plate-driven Couette flow and were able to predict the collapse of turbulence 
in terms of the external forcing parameters. 
 
Despite those promising results, the studies heavily depend on the adopted closure assumptions. 
Also, in order to make the mathematical analysis tractable, forcings and boundary conditions are 
rather unrealistic as compared to the atmosphere. In fact, true progress can only be made by 
comparing the analysis with observed regime transitions. It is clear that such a comparison is not 
a trivial task, as the real atmosphere has ‘open borders’, is non-homogeneous and often non-
stationary (e.g. Vickers et al., 2006).  
Alternatively, we may compare the analysis with direct numerical simulations (DNS) of the 
SBL.  In a DNS the Navier-Stokes equations are discretized directly without the need of a 
specific turbulence closure assumption, which is an advantage over e.g. Large Eddy Simulation 
(Nieuwstadt, 1992). Also, it is possible to control the flow in terms of forcing parameters and 
pure stationary homogeneous situations can be studied. Nevertheless, it is realized that a DNS of 
a stably stratified flow is still only a surrogate of the real SBL: due to limited computational 
power, DNS-studies typically simulate flows with Reynolds numbers of  O(104-105) as typical 
atmospheric value are O(108-109). Moreover, important processes like longwave radiative 
divergence are usually neglected in DNS and the surface is often taken as an external boundary 
condition, although in reality it is an internal part of the system leading to additional feedbacks 
(Van de Wiel et al. 2002a).  
 



In this context, an important result was obtained recently, by Nieuwstadt (2005), from now on 
N05. N05 used a DNS to study a pressure-driven stably stratified channel flow with a fixed 
surface heat flux. By altering the surface heat flux, a regime transition from a continuous SBL to 
a non-turbulent SBL was observed, similar to the atmospheric case. This is illustrated in figure 1, 
where we repeated the N05 simulations: two cooling rates reflecting two different values of the 
stability parameter h/L, are imposed. The figure shows the turbulent kinetic energy (TKE) as a 
function of time. For h/L=0.4 the TKE approaches a steady state: a continuous turbulent SBL. 
For h/L=2.0, however, the TKE rapidly decreases because of ceasing turbulence. Apparently, the 
system’s response is highly non-linear (not ‘smooth’) for increased cooling.  
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Fig. 1. Time evolution of the turbulent kinetic energy (scaled by pressure gradient and channel depth-section 2) in a 
stably stratified channel flow. The cases represent moderate cooling (black line) and strong cooling (grev line). 
Results are obtained from DNS as described in section 2.   



Moreover, circumstantial evidence was given in N05 suggesting that the DNS profiles may still 
follow local similarity scaling, in spite of the low Reynolds numbers (see also: Coleman et al. 
1992). This aspect is of significance and will be elaborated in the present study, because local 
similarity is the cornerstone for the parametization of turbulence in the abovementioned 
theoretical models. As such we focus on the continuous turbulent stratified flow depicted in 
figure 1 (case 1).  Direct numerical simulations will be compared with results from a local-
similarity model. As such, we explore the N05 conjecture and will show that local similarity is 
still valid at those low Reynolds numbers. This conclusion enables us to use DNS as a tool to 
diagnose the shape of the local similarity functions for the gradients of wind and temperature, 
without the need to rely on a closure assumption. It provides ‘benchmark similarity-
relationships’ for idealistic stationary homogeneous flow, complementary to atmospheric 
similarity studies that are often disturbed by non-stationary and non-homogeneous effects 
(Mahrt, 2007). In future work the collapse case will be studied in more detail (second case in Fig. 
1), as to investigate a possible analogy between DNS and similarity models for this case and to 
investigate the potential of the theoretical approach mentioned above (D99b, W07). 
 
The paper is organized as follows: in section 2 the simulation set-up and the model descriptions 
are given. The results of the model comparison are shown for the neutral spin-up and the cooling 
period in section 3 and 4, respectively. In section 5 similarity functions for the dimensionless 
gradient are determined from DNS simulations, followed by discussion and conclusions in 
sections 6 and 7.  
  
 
 
 
 
 
 
  
 
 
 
 



2 Set-up of the numerical experiment and model descriptions 

 

As an analogy to atmospheric stratified flows, N05 studied a simple stably stratified channel 
flow. We adopt the same configuration using:  

• A direct numerical simulation model (DNS), that resolves turbulence up to the 
Kolmogorov scale.  

• A local similarity based model  
 
2.1 Set up of the experiment and flow configuration 
Aerodynamic smooth flow is simulated with a turbulent Reynolds number 

360Re ** == νhu
EXT

, where the value of EXTu* equals the surface friction velocity, 0*u , in 

steady state (see below), h is the channel depth andν  the kinematic viscosity of the fluid. In 

terms of mean bulk velocity, assuming )20(* OuU bulk ≈ , the bulk Reynolds number is )7000(O . 

Obviously, the Reynolds number is small as compared to typical atmospheric values (say ~ 

)10( 8O ), due to computational limitations of DNS. This aspect will be discussed in section 4.  

 
A schematic picture of the configuration is given in figure 2.  
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Fig. 2: schematic picture of the channel flow. Decreasing temperature is reflected by increasing grey-scale. 

 
Mechanical forcing:  

-A horizontal pressure gradient is imposed such that: 360Re ** == νhu EXT  with 

hxPu EXT )/)(/1(* ∂∂−= ρ , and fixed channel height h . The external forcing 

parameter EXTu*  equals surface friction velocity 0*u in a steady state (Eq. (6)). 

Boundary conditions:  

-At the lower boundary the amount of heat extracted at the surface 0H  is prescribed (Von 

Neumann condition) by fixing the external parameter EXTLh to the default value 0.4. 

EXTLh is defined by: 
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hg
Lh ⋅=

ρ

κ
 

  (1) 

It is important to note that, contrary to N05, we include the Von Karman constant in the 

definition of L, following meteorological conventions. Thus, our 4.0=EXTLh  must be 



compared with the N05 0.1=EXTLh  case. In summary: the external ‘drivers’ of the system, 

the pressure gradient and the surface heat flux are imposed by fixing *Re  and EXTLh . 

-The temperature at the top of the channel is fixed (Dirichlet condition). 

-A no slip boundary is imposed at the bottom ( 0=U at 0=z ), and a free-slip condition is 

imposed at the top ( 0=∂∂ zU at hz = ). 

 
Physical parameters: 

For consistency with N05, the Prandtl number λν=Pr  is set to unity, although 0.72 seems 

more realistic for atmospheric dry air. Coriolis effects are ignored and long-wave radiative 
divergence is not taken into account. The Von Kármán constant κ is set to 0.4 (Högström, 
1996). 

 

2.2 Direct numerical simulation (DNS) 
In addition to the setup outlined above, for the DNS the following characteristics are relevant: 

- The domain size is h5 in both horizontal directions and h1 in the wall-normal direction.  
- The number of grid points is 100 in each of the three dimensions (unless stated 

otherwise). 
- Periodic boundary conditions are applied to all variables in both horizontal directions. 

- The initial conditions for the neutral runs ( 0=EXTLh ) are uniform temperature and 

uniform velocity (with some random perturbation). For the stratified runs, the initial 
conditions are obtained from that neutral run (run until equilibrium is reached).  

The model was specifically developed for the present study although implementation details are 
similar to those in the LES model of Moene (2003). Note that we utilize a second-order finite 
volume discretization in space and for time integration a second-order Adams-Bashforth method 
is used. 
 
Given the configuration, it is useful to establish whether a 1003 grid suffices for DNS of a 

360Re* = flow, summarizing the analysis by N05. Consider an equilibrium flow situation and 

assume that the height averaged dissipation ε  of TKE equals the average shear production: 
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)(2

* zu is used as a short-hand notation for the local shear stress (the surface value of *u  is 

denoted by 0*u ). The first term at the right hand side drops out and we realize that in an 

equilibrium state stress divergence is height-independent: ))(1(2

* xPzu ∂∂=∂∂ ρ , so that we 

obtain an estimate for the average dissipation: 
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(3) 

with U , the height-averaged velocity. From this dissipation rate the Kolmogorov length scaleη  

is found:  
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It should be stressed that this estimate of η  is based on the domain averaged dissipation rate. 

Close to the surface both shear stress and shear will be relatively large and hence the production 

and dissipation of TKE, resulting in a smallerη . We combine (3) and (4) with the definition of 

*Re  to obtain the ratio between the domain height and the Kolmogorov length: 
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(5) 

With 360Re* =  and a typical value for 20* ≅EXTuU , we estimate: 175≅ηh . From the 

number of grid cells 100=∆zh , so that 75.1≅∆ ηz  and 9≅∆=∆ ηη yx . As discussed in N05 

this is at the limit of what one could call a DNS, and we accept it for our problem because the 

effects of static stability manifest themselves at scales much larger that η . Nevertheless, in 

section 5, we will discuss the grid resolution aspect by showing higher resolution results. For 
consistency with N05 we take a 1003 grid as the default configuration. 
 
2.3 A simple 1-D similarity model of stratified flow 
 
For the similarity model the governing equations for wind speed and temperature read: 
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First order closure (K-theory) is adopted to parameterize the local stressτ and heat flux H : 
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(9) 

The total diffusivities are taken to be the sum of molecular and turbulent contributions: 



MMTOT KK +=ν,   ; HHTOT KK += λ,  

(10) 

From a physical point of view the turbulent diffusivities should take into account the 
limiting effects on dominant eddy size of both stability and the presence of a solid 
boundary (Van de Wiel et al. 2008). As such, the turbulent diffusivities are given by: 

)(2

, RifzUlK nHM ∂∂=  

(11) 

with nl  being the neutral mixing length and: 
2)1()( cRRiRif −= ;  cRRi ≤  

0)( =Rif ;   cRRi >  

(12) 

Here, the gradient Richardson number is defined as: 

2)( zU

zT

T
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ref ∂∂

∂∂
≡  

Van de Wiel et al. (2008)  point out that (12) is equivalent to log-linear similarity 
functions: 

Λ
+=

z
HM αφ 1,  

(13) 

  

Where Mφ  and Hφ  are the dimensionless wind speed and temperature gradients, 

respectively and Λ the local Obukhov length (Eq. (19)). Equivalence with (12) occurs 

when cR is taken equal to α1  and zln κ= . We take 5=α  ( 2.0=cR ), as a reasonable 

representation (up to )1(~ Oz Λ ) of atmospheric observational studies (Businger et al. 

1971, Högström (1996), Howell and Sun (1999), Baas et al. (2006)). The neutral mixing 

length nl is given by:  

zzAln κ)(=  

(14) 

At first sight this formulation seems to deviate from the classical zln κ= . However 

)(zA virtually equals 1, except very close to the wall, for reasons given below (Pope, 

2000; Kundu, 1990). In smooth flow the near-wall region can be divided into three sub-
regions: 

- The viscous sublayer with extends approximately from 50 ≤< +y , with 

υzuy *=+ . The velocity profile is linear, being dominated by viscosity.  

- The inertial sublayer that becomes valid for 30>+y . In this region “inertial” 

transfer of energy by inviscid turbulent motions dominates. The velocity profile 
attains the well-known logarithmic shape.  



- The buffer layer ( 305 ≤< +y ). In this transitional layer neither viscous stress nor 

Reynolds stresses are negligible.  
Although the asymptotic velocity profiles in the viscous sublayer and the inertial sublayer 

are readily found from (10)-(11) in combination with zln κ= alone, it does not provide 

an accurate description of the profile in the buffer-layer. Based on laboratory studiesVan 
Driest (1956) found an empirical answer to this problem by defining a damping 

function )(zA to be combined with  (14): 
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zu

C
zA  

(15) 

,with the empirical constant 26≈C . Note that expression (15) provides the correct 
physical limits in the viscous and the inertial sub-layer. It will be shown that Eqs. (10)-
(15) give a reasonable representation of the velocity profile as compared to DNS.  
 
2.4 A comment on the implementation of the upper boundary condition 
 

Although the model comparison between the similarity model and the DNS is as ‘clean as 
possible’ the free-slip top boundary condition invokes an implementation issue that is 
inherent to the different nature of the models. By definition the vertical velocity vanishes 
at the top of the domain. For the DNS, this necessarily implies that velocity fluctuations 

at the top become zero ( 0'=w ) and that turbulent exchange near the upper boundary is 
effectively suppressed. However, this ‘upper-wall’ damping effect is absent in 
simulations with the similarity model (where only mean velocities are dealt with and the 
mean vertical velocity is zero throughout the 1-D model). Fortunately, for the stably 
stratified case, turbulence in both models is strongly suppressed by the physical fact that 

cRRi →  in the upper part of the domain (section 4). Therefore, consequences of this 

boundary issue mostly affect the neutral spin-up simulation, and effects on our case of 
interest (stratified flow) are limited. We note that the upper boundary issue could be 
avoided by simulating a vertically symmetric stably stratified Couette flow with two 
walls moving in opposite direction (with fixed wall temperatures). Such flow rapidly 
evolves towards a steady state as compared to the present pressure driven flow. Though it 
was verified that a close agreement between the similarity model and the DNS was 
reached, the results are beyond the scope of the present work.  
 
3 Model comparison: neutral spin-up results 

 

3.1 Introduction 
In the next two sections we compare the results of a channel flow simulation with the 1-D 
similarity model (from now: 1-D) and the DNS. Both models start with an initial uniform 

wind profile: 30)(* =zuU . To ensure stationarity a relatively long neutral spin-up period 

of 50 *t  is taken. We note that 50 *t  is comparable to a time span of about 7 hours for an 

atmospheric SBL with 100=h [m] and 2.0* =u  [m s-1] ( 500* =t [s]). It was verified that 

a steady state was reached by analyzing both domain integrated TKE and mean profiles.  



 
3.2 Results 
In figure 3 we show the equilibrium velocity profiles as obtained by the numerical 
models. Although in general the results from the both models are rather close, some 
differences can be discerned. At the top of the channel the 1-D model seems to 
underestimate the velocity compared to the DNS (discussed below). In the lowest part of 
the channel both models seem to compare well, although this becomes more evident by  

plotting the flow in a classical sense, using a scaled height coordinate ν*uz  on a 

horizontal logarithmic axis (Fig. 3b), where the scale parameter *uν  is proportional to 

the thickness of the viscous sub-layer.   
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Fig. 3a: Equilibrium  wind profiles after the  neutral spin-up period.  
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Fig. 3b: As 3a but now on a logarithmic scale  using y+ height coordinates.  

 
For y+>30 both models show a more or less logarithmic behaviour of the velocity profile 
(the well-known ‘log-law of the wall’; not shown). Also, due to the fact that the 1-D 
model has proper physical limits in the viscous sublayer (u+=y+) and realistic velocity 
profile in the buffer layer (via the Van Driest function) the model is in good agreement 
with the DNS close to the wall. 
Although Figs. 3a and 3b represent neutral flow, a  the behavior close to the wall will be 
similar in the stably stratified case (next section). This can be understood by supposing 

that stability is of minor importance when say Lz 1.0<  (Eq. (13)). For our default case 

with 4.0=Lh  this implies minor importance in the region hz 25.0<  or in viscous units: 

90Re25.0 * =<+y . As such, close to the wall, good agreement between the 1-D and the 

DNS is to be expected for the stably stratified simulations as well.  
 Finally, as indicated above, it occurs that the 1-D model deviates from the DNS 
near the channel top. This is probably caused by the difference in the implementation of 
the top-boundary condition, discussed in section 2: as the DNS follows 

the 0'=w condition at the top of our ‘free-slip wall’, there is a damping mechanism on 
turbulent exchange, which is absent in the 1-D case. Therefore, in order to oppose the 
same pressure gradient as in the 1-D case, the overall shear in the DNS must be larger.   
   



4 Model comparison: results on stably stratified flow 

 

4.1 1-D versus DNS: mean profiles 
In this section the model comparison is extended to stably stratified flow, with the flow set-up 
consistent with Nieuwstadt (2005). After the neutral spin-up period, a fixed surface heat 

flux 0H is extracted such that 4.0=EXTLh . As, contrary to N05, our definition of L includes the 

Von Karman constant, our 4.0=EXTLh  must be compared with the N05 0.1=EXTLh  case. The 

integration period amounts *25t , as in N05. For the DNS, mean variables are calculated from 

instantaneous horizontal slab-averages of the turbulent field.  
 
Figure 4a shows the time evolution of the mean wind profile for the DNS. The effect of static 
stability is clearly visible. Due to the fact that turbulent exchange is less efficient in stratified 
flow as compared to neutral conditions, larger wind shear is needed to oppose the horizontal 
pressure gradient. The profile attains a typical log-linear shape that is also characteristic for 
atmospheric stably stratified conditions. At the channel top the wind speed gradient necessarily 
becomes zero due to the free-slip condition. Fig. 4b is similar to 4a, but now for the 1-D model. 
Although minor differences are noticeable, the agreement between the models is surprisingly 
good, in view of the fact that the 1-D model has relatively simple physics. The 1-D model gives 
the same characteristic wind profile: linear in the viscous sublayer, then log-shaped (inertial 
sublayer), again linear (dominated by static stability) and negatively curved at the top (due to the 

BC). Both models seem to reach a reasonable quasi-steady state after *25t although a strict steady 

state has not yet developed (see below).  
 
A similar comparison is made for temperature (Figs. 5a,b). After a transient period, the 
temperature profiles approach some kind of quasi-steady equilibrium. By quasi-steady we mean 
that the shape of the temperature profile does not change in time. Of course, due to the fact that 
the boundary layer is cooling as a whole, the absolute temperature decreases. Formally, we speak 
of a quasi-steady equilibrium when (differentiating (7) with respect to z ):  
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(16) 

, which implies a linear flux profile. Due to the fact that a fixed temperature is prescribed at the 
top, a truly quasi steady state as in (16) can not be reached: as the boundary layer continues to 
cool as a whole, the temperature gradient at the top increases in time, so that (16) can not be 
valid at the top itself. In turn, the increasing gradient results in an increasing top heat flux by 
molecular diffusion. This non-negligible (relatively low Re) source of heat already reaches 40% 

of the surface heat flux at *25t  and attains asymptotically 100% at *t  ~O(500). In the latter case, a 

constant flux layer is formed which implies strict stationarity ( 0=∂∂=∂∂ tTtU ).  

As for wind speed, the similarity between the simulated temperature profiles (5a,b) is 

strong except for some deviations during the transient period ( *10tt = ) where the integrated 

cooling in the 1-D model seems to be a bit less than in the DNS. It appears that a larger heat flux 

at the top of the boundary layer is generated in the 1-D case as compared to the DNS: at *10tt =  

the1-D top heat flux is 12% of 0H  against 6.5% for the DNS. Although top temperatures are 



fixed, top-gradients and top molecular fluxes are not, being determined by the internal mixing 
characteristics of the system. Note that the previous discussion on the difference between the 
models in term of their top boundary condition may apply here as well, albeit of less importance 
than in the neutral case.  
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Fig. 4a: Temporal evolution of the wind profile as calculated by the Direct Numerical Simulation. 
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Fig. 4b: As 4a but now for the 1-D model
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Fig. 5a: Temporal evolution of the temperature profile as calculated by the Direct Numerical Simulation. 
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Fig. 5b: As 5a but now for the 1-D model 



4.2 The DNS related to Nieuwstadt (2005): a short comment  
 
Before proceeding to the flux profiles, the mean profiles of our DNS are compared with those 
from the DNS by Nieuwstadt (2005). This DNS-intercomparison is to support the idea that direct 
simulation does not require (subgrid) models of turbulence: ‘different’ DNS models should lead 
to equal results in an ‘ensemble sense’. We obtained the N05 graphs by a data digitalization 
method, which is reasonably accurate except very close to the surface. Mean profiles after 

*25tt =  are shown in Figs. 6a,b.  
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Fig. 6a: mean wind profile at t=25 t* for our and Nieuwstadt’s DNS. 
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Fig. 6b: mean temperature profile at t=25 t*. 

 
Although the models were developed independently, it is clear that both for wind and 
temperature an excellent agreement is found. Minor differences are supposed to be caused by 



either real statistical-physical effects: the mean profiles are (horizontally averaged) snapshots of 
fluctuating turbulent fields (formally speaking, confidence intervals should be used), by minor 
differences in the numerical techniques used to solve the equations, or different spin-up periods 
(not reported in N05).  Figs. 6a, b may also be viewed upon as an independent confirmation of 
the N05 results. Keeping this in mind, we will focus on the comparison between our DNS and 
the 1-D model. A full DNS inter-comparison of turbulent fields is beyond the scope of this text.   
 
4.3 1-D versus DNS: flux profiles 

In Fig. 7a the DNS slab-averaged, instantaneous ( *25tt = ) flux-profiles are presented. The 

turbulent momentum flux has reached a nearly linear shape that is typical for this type of wall-
shear flows that approach quasi-steady equilibrium. In fact, the linear shape is even more evident 
from the total momentum flux (turbulent + viscous transport, not shown): near the wall, turbulent 
motions are suppressed and shear is large, so that the momentum flux is dominated by viscous 
transport in that region. A characteristic linear profile is also observed for turbulent heat flux. 
However, the total heat flux (not shown) does not approach zero at the top. In fact, as the laminar 
heat flux at the top approaches 50% of the surface heat flux, so does the total heat flux. Similar 
characteristics are found for the 1-D model (Fig. 7b). As such, it appears that the simple 
superposition principle in the 1-D model with separate molecular and turbulent contributions to 
the total diffusion works reasonably well. Of course, due to the fact that the DNS model 
explicitly calculates turbulent motions, its patterns are more irregular than with our 1-D model 
that represents an ‘ensemble’.  

Finally, the 1-D results are different for 9.0>hz , because turbulent fluxes are diagnosed as 

zero, whenever cRRi > , according to Eq. (12). The time evolution of Ri  in the 1-D model is 

given in Fig. 8, together with a single Ri-profile from the DNS. Generally, the Ri-profiles 

develop a typical negative curvature. For all times indicated, Ri exceeds cR at the top of the 

channel. For *10tt ≥ , cRRi
2
1>=  in the upper 70% of the channel, which implies that )(Rif is 

reduced by more than 75% compared to its neutral value. The Ri-profile from the DNS shows a 
similar shape, tending to a somewhat more neutrally stratified region in the lower half of the 
channel.  
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Fig. 7a: instantaneous flux profiles (molecular and turbulent contributions) as calculated by the DNS (slab averages 
at t=25t*). 
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Fig. 7b: as 7a but for the 1-D model. 
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Fig. 8: Time evolution of the Ri-profiles for the 1-D model. For t=25 t* also the DNS profile is depicted. The critical 
Richardson number (here 0.2) is indicated by the vertical line.  

 
5 Similarity functions from direct numerical simulation 

 

5.1 Flux-profile relationships 
From the previous section it appears that the profiles of mean velocity and temperature, as well 
as the flux-profiles of the DNS are closely approximated by the 1-D model. This result is 
significant, because the 1-D turbulent closure has its roots in high-Re atmospheric flow 
observations, and is now successfully applied to a low-Re turbulent flow. This result suggests 
that Reynolds similarity holds: results become independent of Re when Re is large enough. From 
this we are encouraged to estimate local similarity functions for mean gradients directly from 
DNS turbulent fields. Usually the local similarity functions are defined as (Nieuwstadt, 1984):  
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Local similarity is a generalization of Monin-Obukhov similarity in a sense that local turbulent 

variables (here: *u , *θ  or H ) are used in stead of surface variables (here: 0*u , 0*θ  or 0H ; Sorbjan, 

2007). Thus the local Obukhov length Λ is defined as: 
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The simulation is run for *102tt =  in order to reach a quasi-steady state (Fig. 9) 
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Fig. 9: DNS flux profiles showing quasi-stationary behavior. t=100t*. Averages have been taken over 20 fields 
between t=100t* and t=102t*. 

 
The turbulent heat flux profile in Fig. 9 becomes almost uniform, suggesting that the system 
evolves from a quasi-steady towards true-steady state. However, longer integrations with the 1-D 

model (not shown) reveal that asymptotic steady-state is reached only near )500( *tOt = . For our 

purpose quasi-steadiness suffices, because a local balance between turbulent fluxes and gradients 
has settled in. 
Next, fluxes and mean variables are spatially and temporally averaged, by taking horizontal slab 

averages over the period ** 102100 ttt −= . In this way a statistically robust estimation of the 

‘ensemble average’ is obtained. In the current set-up, vertical gradients of the mean wind and 
temperature can be estimated directly from finite differences:  
a)  A large number (100) of computational levels are available, so that finite differences give an 

accurate estimation of the differentials in (17) and (18) ‘in a Taylor-series sense’.  
b)   Large curvature in the mean variables occurs mainly near the boundaries and those regions 

are excluded in the analysis (see below). 
In the atmosphere, the local similarity functions are hardly influenced by molecular effects, due 
to the high Reynolds number. Thus, in order to be representative for the atmosphere, the present 
analysis excludes the boundary regions where molecular effects significantly contribute to the 

total flux (Fig. 9). As such we exclude the regions: 1.0<hz 5 and 75.0>hz . After scaling 

with the local fluxes the dimensionless gradients are obtained as a function of Λz (Fig. 10). For 

comparison also the line Λ+= zHM 51,φ is plotted.  
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Fig. 10: Dimensionless gradients as a function of the stability parameter Λz , as obtained from the DNS. For 

comparison also the line Λ+= zHM 51,φ is given. 

 

A clear linear dependence is found over the range of analysis ( 20 <Λ< z ), i.e. up to moderate 

stability (in the next section we will show that this linearity also holds for larger ranges of Λz ). 

Both curves seem to be reasonably represented by the function Λ+= zHM 51,φ , although it 

seems that in our case the Mφ  -graph lies above the Hφ  -graph. Those marginal differences are 

likely caused by molecular effects. Although molecular effects are largely excluded from the 
analysis, their effect may still be noticeable in the mean gradients in the bulk of the boundary 
layer, since the region dominated by molecular transport acts as the ‘boundary condition’ for the 
bulk of the flow. Since in our set-up the upper boundary conditions are essentially different for 
heat and momentum (compare also Fig. 9), this could be marginally reflected in the Phi-
functions.  

We note that theφ -functions in figure 10 are in general agreement with the classical 

results of Webb (1970) and Businger et al. (1971). However, those results were obtained for 

weak stability ( )5.0(Oz <Λ ). Ever since, there have been a vast number of experimental 

studies to extend the φ -functions to stronger stability (Beljaars and Holtslag, 1991; Howell and 

Sun, 1999; Chen and Brutsaert, 2005; Chrachev et al., 2007). For weak stability (say: 1<Λz ) 

most studies show a linear dependence with coefficients typically between 4-8, more or less in 
agreement with the classical results. For stronger stability however, results rapidly diverge 
amongst various studies, so that the precise shape of the phi-functions is still under debate. In 

fact, physically speaking, it is not clear if Mφ  and Hφ  are still ‘universal/unique functions’ at 

large stability. In our opinion, this apparent non-universality in the stability functions may be 
caused by the fact that observations almost always ‘suffer’ from non-homogeneity and non-



stationarity of the flow. This view is supported by recent findings of Mahrt (2007) from analysis 

of the FLOSSII dataset. He shows that in stationary conditions Mφ  generally has a linear shape as 

in Fig. 10, whereas for non-stationary conditions Mφ tends to ‘level-off’. For Hφ the picture is less 

clear. In fact similar results where found from our DNS study (not shown) by plotting Fig. 10 for 

non-stationary situations (i.e. for t: *25t< ), which resulted in leveling-off behaviour for Mφ and 

Hφ . Also, we recall that both the flux-calculation (Vickers et al. 2007) and the gradient 

calculations from a limited number of observational levels (Baas et al., 2006), is far less trivial 
than in a DNS. Finally, other atmospheric processes, such as long-wave radiative cooling, may 
directly affect the temperature gradient and distort a unique relationship between gradients and 
the turbulent fluxes.   
 
5.2 Some sensitivity analysis 
 

As discussed in section 2 the numerical resolution of our simulations (kept equal to N05) is still 
rather course for a DNS. Therefore, we performed a double resolution run (2003 grid cells), and 
repeated the analysis of the previous section. The result is depicted in Fig. 11a. Comparing Fig. 
11a with Fig. 10 it appears that the result is resolution-independent and we conclude that the 
default simulation has sufficient resolution (a comparison of the law-of-the-wall between the two 
runs showed some grid-dependence, with improved correspondence with the theory for the high 
resolution run; not shown). With this fact it is tempting to run a higher Reynolds number, 

e.g. 720Re* = .Using 2003 grid cells this implies that 5.1≅∆ ηz  comparable to the default 

resolution where 7.1≅∆ ηz  (section 2). Due to the fact that a higher Reynolds number is 

simulated we need only to exclude a smaller range of hz in order to reduce molecular effects, i.e. 

excluding 08.0<hz  and 85.0>hz , so that a larger range of Λz is visible in the graph. 

Comparing Fig. 11b with Fig. 10 reveals that the loglinear character is maintained at the higher 
Reynolds number. On the other hand a signature of some  
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Fig. 11a: as figure 10, thus keeping 360Re* =  , but using double resolution in the simulation. 
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Fig. 11b: as figure 10, but double friction Reynold number: 720Re* = . Due to higher Reynolds number a larger 

range of Λz outside the viscous range can be plot. 



Reynolds dependency of the results is present in the fact that the slope of the graph tends to be 
closer to 4.5 in stead of 5 in the default case. Although it is beyond the scope of the present work 
to fully explore Reynolds dependencies of the results, this aspect certainly deserves more 
attention in future studies. 
 
6 Discussion  

 
6.1 Local scaling 
Our DNS results support the idea of local scaling and strongly suggest a log-linear shape of the 
phi-functions. At this point we recognize that such shape can be anticipated from physical 
arguments in terms of mixing lengths (Van de Wiel et al. 2008), but can also be inferred from 
Nieuwstadt’s (1984) work. Note that a log-linear shape also implies simple quadratic stability 
functions in terms of the gradient Richardson number Eq. (12), which facilitates analytical 
studies on the collapse phenomenon mentioned in the introduction.  
On the other hand the present work is far from complete: especially the sensitivity of the results 
to the Reynolds and Prandtl number could be explored in more depth, and non-stationary or non-
homogeneous flows deserve more attention. We also did not address the local scaling behaviour 
of dimensionless variances or other dimensionless groups (as in Coleman et al. 1992). As such, 
the main issue of the present work is to support DNS as a useful alternative for Large Eddy 
Simulations in simulating atmospheric stable boundary layers.  
 
6.2 Implications for the collapse phenomenon 
Pioneering studies by McNider (1995), Derbyhire (1999) and Van de Wiel et al. (2002b) 
revealed that the land-atmosphere feedback is of key-importance for the collapse phenomenon: 
both top-soil and vegetation must be considered as part of the dynamic system, not as an external 
boundary condition. As such, flux boundary conditions (as in N05) or temperature boundary 
conditions are an oversimplification. A realistic study of the collapse phenomenon should 
include some surface energy balance with a parameterization of the vegetation and include the 
top-soil where the true temperature boundary condition lies below the e-folding depth where the 
daily cycle is felt. Realistic boundary conditions are much easier incorporated in single column 
models than in a DNS. As such, in view of the success of local scaling, 1-D models have 
potential for studying the collapse phenomenon. On the other hand it is not necessarily obvious 
that either the 1-D model or the DNS are suitable tools for studying the collapse of turbulence in 
the SBL: 

- Local scaling implies that turbulence should be steady and in local equilibrium. By 
definition steadiness is absent in decaying turbulence and the similarity model can at best 

only serve as a crude approximation for this type of flow (when tTKE ∂∂ is relatively 

small compared to the other terms in the turbulent kinetic energy equations). 
- On the other hand, the SBL simulations by DNS, though valid in itself, may loose their 

analogy to atmospheric SBL’s: in ceasing turbulence the effective Reynolds number will 
significantly decrease and simulated results will be dominated more and more by viscous 
effects. In the atmosphere however, viscosity dominated flow will not easily occur, even 
when turbulence is very weak (Mahrt and Vickers, 2006).  

Therefore, in future work we will investigate the collapse phenomenon by using both models in 
order to find an answer to those issues.  
 



7 Conclusions 

 

In the present work a continuous turbulent stably stratified channel flow is studied with a direct 
numerical simulation model and with a simple similarity model. With DNS, the flow is simulated 
without the need of a specific turbulence closure model, whereas the local similarity model is 
based on a simple parameterization of turbulence. A relatively low Reynolds flow (O (7000)) is 
simulated and both models explicitly account for molecular flux contributions. The flow 
configuration is identical to the flow configuration by Nieuwstadt (2005), who studied both the 
continuous turbulent and the collapsed SBL. The present work only addresses the continuous 
turbulent part with the following conclusions:  
 

• The evolution of the profiles of mean and the flux profiles show a remarkably close 
agreement between the 1-D model and the DNS. This is surprising because the 1-D 
model originates from high Reynolds number similarity laws and is successfully applied 
to low Re, so that the dependence on the exact Reynolds number seems to be weak.  

• From this fact, (low-Re) Direct Numerical Simulations have potential as a tool 
(complementary to atmospheric observations) to find  similarity relationships such as 
local scaling relations. With the DNS pure stationary and homogeneous flow can be 
simulated, whereas those conditions are rarely encountered in reality. The dimensionless 
gradients of wind and temperature from our DNS show strong evidence for log-linear 

behaviour close to the traditional Λ+= zHM 51,φ ,  over the range of analysis 

( 40 <Λ< z ). On the other hand, the current analysis is based on low Re flow and the 

sensitivity of the results on Re deserves more attention in future work.  
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