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ABSTRACT

In recent studies (Jonker et al. [2008], Heus et al. [2009])
it was found that most of the upward and downward mass
transport in shallow cumulus cloud fields occurs near the
edge of clouds. This appears to contradict the idea that
most mass transport occurs in the buoyant cores of large
clouds. To address these and other issues, in this study
we make a detailed analysis of Large Eddy Simulations
of cumulus clouds with a focus on the cloud edge region.
Apart from diagnosing the mass flux as a function of dis-
tance to the nearest cloud edge as done previously, we
now also simultaneously measure the size of the cloud in
order to learn whether the mass transport is dominated
by the cores of many small clouds, or by the wide perime-
ter region of a few large clouds, or by intermediate sized
clouds. As the edge region features strong mixing and is
responsible for the generation of the descending ’shell’ of
air surrounding the cloud, we also study the lateral size
of cloud shells and test whether or not shell-sizes scale
with cloud-sizes. Next we diagnose cloud entrainment
properties as a function of distance to cloud edge and
verify whether the inner core regions of large clouds en-
train relatively less as would be expected from the fact
that this region is fenced off from the dry environment.
This information relates directly to the notion of ’undiluted
cores’. Finally we focus on the local mixing fractions χ of
conserved variables such as total specific humidity and
liquid potential temperature, and investigate whether χ
can be expressed at arbitrary locations as a linear mixture
of cloud(-core) properties and environmental properties.
Since we know the distance (r) to cloud edge as well, we
are able to establish a straightforward relation between
geometric properties (r) and mixing properties (χ).

1. INTRODUCTION

Jonas [1990] was one of the first to draw attention to the
descending shell of air around active (growing) clouds
in aircraft observations. The entrainment of air is influ-
enced by the presence of a shell of subsiding air. Since
he observed from droplet spectra that large drops being
brought down from higher levels did not significantly evap-
orate, he concluded that this downdraught must be a re-
sult of some mechanical forcing, a pressure gradient for
instance. Rodts et al. [2003] also used aircraft obser-
vations to investigate the behaviour of the virtual poten-
tial temperature and the total water content around the
cloud edges and how this influenced the vertical veloc-
ity. In this research many cloud transects were averaged
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after being rescaled to unit length. Based on the results
for the virtual potential temperature and the total water
content, Rodts et al. [2003] argued that evaporative cool-
ing is the mechanism behind the descending shell rather
than the pressure gradient. He was not able to draw any
conclusions on the role of the other terms in the verti-
cal momentum budget in the shell region, such as mixing
and shear. Heus and Jonker [2008] investigated the be-
haviour of these other budget terms separately by means
of Large Eddy Simulations. They concluded that indeed
buoyancy is the driving force behind the descending shell
of air and that the pressure gradient (just as the other
terms) is even counteractive. Since a lot seems to hap-
pen around the edges of a cloud, Jonker et al. [2008] im-
plemented an alternative way of looking at the cloud edge
by putting the edge central rather than the cloud center.
This method evades the need to rescale clouds before av-
eraging. Based on their LES results they proposed a re-
fined view of vertical mass transport by shallow cumulus
clouds, where most – if not all – of the downward mass-
flux occurs near the edges of clouds rather than via a
uniform descending motion. They also showed that most
of the upward mass-flux happens near the edges and not
so much in the (geometrical) core of clouds. In this study
the area where most of the upward and downward mass
flux is located, is called the cloud edge region.

It could be argued that the mass-flux peaks (both
upward and downward) near the edge of the clouds are
due to the positive buoyant cores of many small clouds.
This can be contrasted with the view where the peaks
are mainly due to the wide perimeter of the large clouds
in the ensemble. This question will be addressed in de-
tail in this study. Another question is what determines the
size of the shell. Does the lateral size of the shell scale
with the size of the cloud or is this a fixed value? This and
the correlation between the strength of the shell and the
size of the cloud are investigated as well.

Since mixing and the descending shell appear to be
closely related, it is appropriate to look at this mechanism
in detail. How does the cloud mix with the far environ-
ment?

2. CLOUD EDGE AREA DIAGNOSTICS

2.1 Cloud Edge Toolbox

The method of Jonker et al. [2008] to study
(thermo)dynamic fields with respect to cloud edges
is illustrated in figure 1.

First the points m = −1 and m = 1 are found around
the edge of the cloud. An edge is defined as the position
where in one box no liquid water is found (ql = 0) and
in its neighbouring box liquid water is present (ql > 0).
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FIG. 1: Illustration of the method determining the dis-
tances to the cloud edge. The width of one box is dx

When these are all distributed over the entire domain the
points around it are located and are given the number
m = −2 when it is next to a −1 and the number m = 2
when it is found to be next to a number m = 1. This pro-
cess is repeated until the entire domain is filled with num-
bers, which indicate the distance to an edge of a cloud.
The distance can be calculated in meters [m] according
to:

r =


(m + 0.5)dx if m < 0
(m − 0.5)dx if m > 0

(1)

Conditional sampling Besides this common definition
of a cloud, which means the presence of liquid water, al-
ternative sampling criteria can be used. An overview of
criteria that are used in this research can be found in table
1.

Table 1: Used conditional sampling criteria

Indicator Type Sampling criteria
I1 Cloud ql > 0
I2 Cloud updraft ql > 0 & w > 0

I3 Cloud buoyant core ql > 0 & θv > θv

With these criteria the values inside the cloud can be
calculated by using the indicator function Is, with Is =
1 when the corresponding criterion is met and Is = 0
otherwise.

ϕc =

R
IsϕdAR
IsdA

(2)

2.2 Atmospheric Quantities

Here the common atmospheric quantities are written as
a function of the distance to the cloud edge r.

When all points are located at a certain distance from
the cloud, the averaged information at that distance at a
certain height can be found according to:

eϕ r(r, z) =
L−2

RR
ϕ(x, y, z)δ(r(x, y, z) − r)dxdy

n(r, z)
(3)

with δ the Dirac function and L the domain size, and n(r)
the normalized number of points. These number of points
are normalized according to:

Z
+∞

−∞

n(r) dr = 1 (4)

How this looks like as a function of the distance to the
cloud edge can be found in figure 2.

The value eϕr is the average of ϕ on a certain dis-
tance r from the cloud edge. When not the average but
the sum of ϕ at one distance from the cloud edge is ob-
served then the following notation is used: eϕr · n(r).

For the vertical fluxes equation (3) is used as well,
where ϕ has to be substituted by w′ϕ′. Also, the subgrid
contributions are taken into account.

2.3 Decomposition of the Cloud Edge Area

Vertical momentum budgets When determining
which mechanism is the driving force behind the de-
scending shell, the vertical momentum prognostic equa-
tion is important. This can be decomposed into separate
budgets:

∂w

∂t
=A + B + P + D

= − uj
∂w
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+ g
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„
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(5)

in which the Coriolis force is neglected, A is the resolved
advection term, B is the buoyancy force term, P is the
vertical pressure gradient term and D is the parametrized
unresolved subgrid diffusion term. This can be further
derived according to:

∂w

∂t
=A − A + B − B + P − P + D − D

=−uj
∂w
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D

With this equation the results by Rodts et al. [2003] and
Heus and Jonker [2008] as presented in the introduction
can be verified.
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FIG. 2: Illustration of the number of points as function
of height z and distance to cloud edge r

Percentage positive buoyant and updraft points
When the peak of the mass flux profile is due to buoy-
ant cores it is interesting to take a look at how many
points of the total points are actually positively buoyant,
as a function of the cloud distance r. To check how this
is correlated to the updraft or downdraft profiles also the
percentage updraft is calculated as a function of r.

Cloud sizes Due to the fact that all clouds of all sizes
are included in this method, it can be argued that the
mass flux peak as shown by Jonker et al. [2008] is a con-
sequence of the rising cores of many small clouds, since
this peak is located so close to the edge. It can also be
explained as the consequence of the large perimeters of
the biggest clouds. This balance is illustrated in figure 3.

To be able to investigate which one is the case,
a different way of decomposing the cloud edge area is

FIG. 3: Views on vertical mass transport: by the cores
of many small clouds or the large perimeter of a few large
clouds.

needed. A method to select clouds on the basis of their
size is the appropriate way. A code is implemented that
numbers the individual clouds and calculates their areas
A on the x-y-plane at every height. The cloud at that
height is then categorized on the basis of its typical size
l, according to:

lp =
p

Ap(z) (7)

with p the number of the cloud and z the height.

2.4 Cloud Edge Area Dimensions

To find out what sets the dimension of the shell (the
strength as well as the width) the same cloud size toolbox
is used as introduced in the previous section, to see what
the correlation is between the cloud size and the dimen-
sions of the cloud edge region. The width rshell is taken
at the point where the vertical velocity w is less than 5% of
wmin for the first time. The strength of the shell is defined
by the value of wmin and the width by rshell. Another in-
teresting correlation might be, whether the strength of the
peak inside the cloud, wmax is correlated with the cloud
size. If this is the case, then also something can be said
about the correlation of wmax with wmin. In figure 4 all
these values are defined.

A different approach to see whether it is the cloud
size that sets the dimensions of the cloud edge area is by
scaling the distance r and the velocity w with the cloud
size l, according to:

w ∼ lα (8)

where α has to be found. When the graphs for every
cloud size lie on top of each other the data collapses and
the height / width is scalable by the cloud size, and thus
correlated in a certain way.

2.5 Properties of the Geometric Core

It is sometimes suggested that the processes in the cen-
ter of a cloud are adiabatic. In this study the center of
the cloud is called the “geometric core”, not to be con-
fused with the buoyant core, which is defined in table 1.



FIG. 4: Definition of wmax, wmin and rshell

To research this the cloud edge region diagnostics are
used to look at the vertical profiles of quantities at cer-
tain distances r to the cloud edge. The quantities qt and
θl are conserved in adiabatic processes, so their profiles
should show a straight vertical line in the geometric core,
if it were adiabatic. In adiabatic cases, the profile of θv

in the core should be parallel to the wet adiabatic lapse
rate:

Γm = Γd

2
4 1 + qsLv

RdT

1 +
L2

vqs

cpRvT2

3
5 < Γd (9)

Another hint that might lead to the proof of the exis-
tence of the so-called “undiluted” cloud cores, is when the
entrainment rate approaches zero near this core. Here as
a function of r and height z, separately:

ε(z) =
d
dz

qt(r, z)

qt(r, z) − qe
t (z)

(10)

2.6 Cloud Mixing

The mixing factor χ is used to describe the mixing be-
tween the cloud and its environment. We can rewrite χ
as a function of r according to:

χ(r) =
qc

t − qt(r)

qc
t − qe

t

(11)

χ(r) =
θc

l − θl(r)

θc
l − θe

l

(12)

The following definition is used for these calculations:

ϕc = ϕ(rmin) ϕe = ϕ(rmax) (13)

thus by taking the deepest and furthest value available.

When a correlation can be found between the mix-
ing ratio χ and cloud distance r, it is possible to try to

reconstruct ql and θv with this correlation.

qt(χ(r)) = χ(r)qe
t + (1 − χ(r))qc

t (14)

θl(χ(r)) = χ(r)θe
l + (1 − χ(r))θc

l (15)

ql(χ(r)) =

qc
l +

χ(r)

1 + Lv

cp

dqs

dT
|T c

»
(qe

t − qc
t ) − π(θe

l − θe
l )

dqs

dT
|T c

–

(16)

θv(χ(r)) =
„

θl(χ(r)) +
Lv

cpπ
ql(χ(r))

«
(1 + ǫ2qt(χ(r)) − ǫ3ql(χ(r)))

(17)
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FIG. 5: Water contents as a function of the distance to
the cloud edge
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FIG. 6: Potential temperatures as a function of the dis-
tance to the cloud edge

3. RESULTS

3.1 Atmospheric Quantities

Mean quantities versus the cloud distance Interest-
ing atmospheric quantities to be analysed in the manner
outlined above are the liquid water content ql, the total
water content qt, the liquid water potential temperature
θl, the virtual potential temperature θv, the vertical ve-
locity w and the mass flux contribution M(r) = n(r)w̃r.
These quantities are shown for various heights in figures
5–7. For these pictures the cloud condition is used for the
sampling, as one can observe from the liquid water con-
tent, figure 5(a). Another thing to observe for qt is “the
higher, the dryer”. For the potential temperatures (figures
6(a) and 6(b)) the opposite behavior is observed. When
higher in the atmosphere these values rise, which can be
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FIG. 7: Vertical velocity and mass flux plotted against
distance to cloud edge r

expected when looking at their definitions. Around cloud
edge there is a dip in the value for θv.

When looking at the figures for qt(r) and θv(r) we al-
ready see an indication that the shell is driven by evapo-
rative cooling, similar to the findings of Rodts et al. [2003],
because of the dip near the edge for the virtual potential
temperature and the absence of one in the total water
content. For the mass flux we observe the same behav-
ior as Jonker et al. [2008] did. Also the downdraught shell
can be seen in figure 7(a). Comparing this with the ob-
servational results by Wang et al. [2009] shows similar
behaviour.

3.2 Decomposition of the Cloud Edge Area

First of all we will decompose the region around the cloud
edge into different vertical momentum budgets to see
what causes the descending shell. Secondly, the turbu-



lence kinetic energy budget terms are shown separately
to see where the turbulence is created or destroyed and
where it is transported to or from. Finally, the mass flux
will be decomposed based on cloud sizes.

Vertical Momentum budgets To see what makes the
air go down around a cloud, the separate vertical momen-
tum budgets as described before are plotted, and shown
in figure 8. If the influence of lateral mixing is negligi-
ble within the shell and the descending air results from
a mechanical forcing, we should observe this through
a negative pressure gradient in the shell. In this case
buoyancy will play a inferior role. On the other hand,
when the lateral mixing causes evaporative cooling, we
should observe negatively buoyant air around the edge
of a cloud, since negative buoyancy is the major driving
force behind downward motion. As one can see clearly in
these graphs, the only budget contributing to a downward
mass flux is the buoyancy force. This is in line with ear-
lier results from Rodts et al. [2003] and Heus and Jonker
[2008]. This indicates that lateral mixing is of significant
importance around the cloud edge.

(a) Vertical momentum budgets nA, nB′, nP ′ and nD

(b) Vertical momentum budgets A, B′, P ′ and D

FIG. 8: Vertical momentum (VM) budgets

What might strike the reader is the unbalance of the

terms A, B, P and D. This is caused by the conditional
sampling. The clouds grow and shrink in time, which
is represented by the “missing term”. The balance was
checked by measuring the vertical velocity field at some
time t = t0 and at t = tf and checking that the time
derivative of the vertical velocity is indeed zero:

∂w

∂t
=

w(tf ) − w(t0)

tf − t0
= 0 (18)

It is nice to see in figure 8(b) how big influence the
buoyancy force has on average inside the cloud, with the
advection as the main counteractive term.
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FIG. 9: Percentage buoyant and updraft points

Percentage positive buoyant and updraft points
Figure 9(a) shows the percentage positive buoyant points
as a function of distance to cloud edge. The percentage
of positive buoyant points is almost everywhere above
80% inside the cloud. Only very close to the edge the



percentage decreases rapidly. Inside, it rapidly goes to
100% which makes the assumption of buoyant cores rea-
sonable.

Another interesting point in this figure is the fact that
in the environment the percentage rises again to about
75%, which means that the environment is on average
positive buoyant. This is in contradiction with the idea that
the environment is on average neutrally buoyant. Clearly
most of the negatively buoyant points reside in the shell
region.

In figure 9(b) it can be observed that in the shell the
percentage updraft points is low, as expected. Again, it
rises when further away from the cloud, to about 50%,
which indicates that the environment neither rises or de-
scends on average.

Cloud sizes Another way to investigate the composi-
tion of the mass flux peak is by implementing the cloud
size statistics as described in section 2.3. The area near
the cloud edge is decomposed on the basis of the size
l of the cloud. The question is whether the balance will
lean towards the large perimeters of the few big clouds or
to the cores of the numerous small clouds. In figure 10
it can be seen that the peak is composed of the perime-
ters of the medium-sized clouds. This means that indeed
most of the mass flux occurs in the area around the cloud
edges, since the peaks are around r = −50 [m] and not
at the center of intermediate-sized clouds. Notable in this
figure is the fact that all peaks are no deeper inside the
cloud than this 50 [m]. For smaller clouds the peaks are
closer to the edge, which underpin the thought that the
mass flux peak is constructed by the perimeters of clouds.
When comparing this figure with figure 9(a) it can be no-
ticed that the buoyant core includes most of the mass flux.

FIG. 10: Mass flux in [m s−1] per cloud size l versus r
at z = 1620 m, ensemble average of 10 runs

3.3 Cloud Edge Area Dimensions

Now that the tools are available to look at the properties
for clouds with different sizes, it is interesting to investi-
gate what sets the size of the shell. With this size the

width as well as the strength are meant. With this method
available the distance r can be scaled with the cloud size.
When this is done and all mass flux peaks seem to have
the same width, it means the mass flux is scalable with
the cloud size. This graph can be found in figure 11(a).
It appears that the peak inside the cloud is reasonable
scalable with the cloud size. But the negative peak out-
side is not collapsing with this scaling. The same can be
observed for the vertical velocity, figure 11(b). The nega-
tive peak is located on different r values for different cloud
sizes.

(a) Mass flux in [m s−1] per cloud size

(b) Scaled vertical velocity per cloud size

FIG. 11: Mass flux and vertical velocity figures as func-
tion of 2r/l at z = 1620 m, ensemble average of 10 runs

The maximum value of the vertical velocity wmax

does seem to collapse at a certain scaling factor lα,
where α ≈ 2/3. This leads to the thought that not the
shell width is set by the size of the corresponding cloud,
but maybe only the strength, both inside and outside the
cloud. So the correlations of width and strength with cloud
size are investigated on the heights in the middle of the
cloud, because near cloud base and near the inversion
other effects have to be taken into account. The red line
in these graphs represents the average of these points.
For the strength (figure 12) there appears to be a nega-



(a) Correlation between the size of the cloud l and the
strength of the shell wmin

(b) Correlation between the size of the cloud l and the
strength of the core wmax

FIG. 12: Correlation of the size of the cloud l with the
strength of the shell and the core

tive correlation, though very weakly. Also, wmax versus
the cloud size is plotted to see if the strength inside the
cloud is correlated in the same way as the strength of the
shell with the cloud sizes. Similar behavior can be ob-
served. This implies that when a cloud has a stronger
geometric core it also has a stronger negative shell.

For the width, figure 13, a horizontal line can be ob-
served, with just a slight increase for the smaller clouds.
This implies that the shell width is independent of the cor-
responding cloud size.

3.4 Properties of the Geometric Core

It is sometimes believed that in the middle of a large cloud
the processes are adiabatic and thus undiluted. With the
cloud edge diagnostics we can study whether this is true
for the shallow convection case considered here. The ϕ̃r-
profiles can be plotted for various locations in the cloud
with respect to the edge distance. When deep inside the
cloud the profiles match the adiabatic profiles, described
in 2.5, the cores are undiluted.

FIG. 13: Correlation of the size of the cloud l with the
width of the shell rshell

(a) Profile of qt for different r

FIG. 14: Total water profile for various values of dis-
tance to the cloud edge r. The red and blue lines rep-
resent the environmental and adiabatic profiles, respec-
tively.

All the profiles give the same message. Only just
above cloud base the processes could be considered
undiluted. But higher up, the lines are start to deviate
from the adiabatic profiles for all distances from cloud
edge. The closer to cloud edge the earlier (lower) it devi-
ates. But even the profiles deep inside the clouds deviate
at some height. This means that deep inside the cloud
dilution by mixing is significant.

Another way to confirm this observation is by look-
ing at the entrainment rate of, for instance, the total wa-
ter content qt. Entrainment rate profiles for different dis-
tances from the cloud edge can be found in figure 16.



(a) Profile of θv for different r

FIG. 15: Virtual potential temperature profile for various
values of distance to the cloud edge r. The red and blue
lines represent the environmental and adiabatic profiles,
respectively.

FIG. 16: Entrainment rate εqt as function of r

It appears that indeed, the deeper inside the cloud, the
smaller is the entrainment rate, but it is certainly not van-
ishing.

3.5 Cloud Mixing

How does the cloud exactly mix with its environment?
This can be well studied by writing the mixing factor χ

(e.g. de Rooy and Siebesma [2008]) as a function of the
distance to the cloud edge r, as is done in section 2.1:
equations (11) and (12). The results for different heights
and χ(qt(r)) as well as χ(θl(r)) are shown in figure 17. It

FIG. 17: Calculated χ(qt(r)) and χ(θl(r)) for different
heights. Also the averages over height and the fit χfit are
plotted

shows a very nice result. Using only the values of the ge-
ometric core (ϕc) and of the far environment (ϕe) gives a
clear image of the mixing characteristics. It can be ob-
served that most of the mixing occurs the cloud edge
area, but also in the cloud (in the buoyant core) some
mixing occurs. The negative values for χ are an artefact
of the calculation method. The values inside and outside
the cloud are defined as in equation (13), thus by using
the value deepest inside the cloud, and the value furthest
in the environment, for every height. As can be seen in for
instance figure 5(b), the point deepest inside the cloud is
not always the maximum value. Putting these values in-
side equation (11) leads to negative values of χ.

As can be seen in figure 17, the results for χ(qt(r))
and χ(θl(r)) do not differ significantly. This allows us to
choose one of those datasets, in this case χ(qt(r)), and
average these over height. Using this average we can
create a fit χfit(r). Since the graph looks like a hyperbolic
tangent function, but asymmetric, two hyperbolic tangent
functions are used:

χfit(r) = a0 + a1 tanh
r − r1

λ1

+ a2 tanh
r − r2

λ2

(19)

With this fit we have the link between the mixing frac-
tion χ and the distance to the cloud edge r and now we
can write other quantities as a function of χ, like ql(r) and
θv(r) according to the functions presented in section 2.1.
It is interesting to compare the θv, constructed with the qc

t ,
qe

t , θc
l , θe

l values and the fit χfit(r), as defined in equation
(17), with the original θv acquired from the LES run. This
result is presented in figure 18. In this figure the excesses
θ′

v = θv − θv are averaged over height. This is done for
both the constructed and the original values. The fluctu-
ations are a more logical choice to average over height



FIG. 18: Height averaged excesses of θ′

v(r) and of the
constructed θ′

v(χ(r))

than the values itself. This appears to be a very good
approximation of the θ′

v(r) and thus of θv(r).
From figure 17 it becomes clear that most of the mix-

ing happens around the edge of the clouds. It even looks
like it is a system that is mixing between three points.
First, there is mixing along a straight line between the
middle of the cloud and a point just inside the cloud. And
secondly, there is mixing along a straight line between
this last point and a point inside the shell. To verify this
thought, an ensemble of 20 runs is used to look for this
behavior in χ(qt(r)), see figure 19.

FIG. 19: Height averaged χ(r) for an ensemble of 20
runs with the three mixing points illustrated

4. CONCLUSIONS AND RECOMMENDATIONS

4.1 Decomposition of the Cloud Edge Area

The negative vertical velocity is the consequence of
strong negative buoyancy
This is a confirmation of earlier findings. All other terms
in the vertical momentum budgets are counteracting the
downward motion in the shell.

The mass flux peak originates from the mass flux at
the perimeters of medium-sized clouds
By using the cloud size diagnostics we were able to
distinguish effects due to different sizes of a cloud. This
led to the conclusion posted above. It appears that the
perimeters of the largest clouds contribute the least, then
the small clouds (either their cloud edges or their cores)
and finally, most of the vertical transport of mass is done
by the perimeters of the medium-sized clouds.

The environment is on average positively buoyant
It is observed by looking at the percentages, that in the
environment 70% of the points is positively buoyant.
Since it would be neutrally buoyant for 50%, this means
that the far environment is on average positively buoyant.
This result is consistent with the simple model by Heus
and Jonker [2008].

4.2 Cloud Edge Area Dimensions

The strength of the shell is weakly correlated to the size
of the cloud
By plotting the minimum value of the velocity outside
the cloud versus the size of the corresponding cloud, a
correlation can be seen between those two quantities.
This can be explained by the observation that big clouds
have strong cores. This was seen in the figure of the
maximum velocity inside the cloud versus the cloud size.
This upward movement has to be compensated by the
downward velocity.

The width of the shell appears to be very weakly
correlated to the size of the cloud
There are two figures that led to this result. First, the
width of the shell versus the size of the cloud and second,
the characteristics of the fit of the mixing factor versus
the cloud size. This first graph suggested that the width
is uniform for different cloud sizes, but the second shows
a slight increase. It might be that the way the fit for
χ has been set up is inherent to this result. The fit is
constructed of two hyperbolic tangent functions. With
a bigger cloud the asymmetry increases and thus the
top of the derivative shifts to the left, increasing the σ2

alongside.

4.3 Properties of the Geometric Core

The existence of undiluted cores inside shallow cumulus
clouds is unlikely
When looking at the profiles of the quantities for differ-
ent distances to the cloud edge, it is seen that even deep
inside the cloud these profiles do not align with the adia-
batic profiles that would be expected for undiluted cores.
Together with the graph showing that the entrainment rate
does not go to zero inside the cloud, this result leads to
the conclusion that the existence of undiluted cores is not
very likely. The whole cloud is dynamic and mixes with
its environment. This mixing is damped with the distance
further into the cloud but does not go to zero since the
geometric core is still mixing with the area around it.



4.4 Cloud Mixing

The mixing factor χ can be linked to the cloud distance r
Calculating the mixing factor on the basis of qc

t and qe
t or

on the basis of θc
l and θe

l and their profiles as a function
of r leads to a relation between this cloud distance and
the mixing factor χ. This relation at first sight looks like
a hyperbolic tangent function, but taking a closer look
suggests that there is a slight asymmetry that requires a
second hyperbolic tangent function. With this relation it is
shown that most of the mixing happens around the cloud
edge.

The virtual potential temperature can be parametrized by
the use of only the values of θl and qt inside the cloud
and the environment and with the relationship between χ
and r
It is shown that when this relationship between χ and r is
available, only the information of four points is needed to
calculate the virtual potential temperature as a function
of r. This works only in the middle of a cloud since at
the top and bottom the relationship changes due to other
effects not taken into account. The four points are θc

l , θe
l ,

qc
t and qe

t , defined as the furthest points available inside
and outside the cloud.

The mixing between cloud and environment seems
to occur in a three point mixing way
The first point is the geometric core of the cloud, the
second is the point in the area close to the edge, but
still inside the cloud and the final point is in the area just
outside the cloud, the shell. It appears that straight lines
can be drawn between those points to match the mixing
profile χ(r). Some mixing still occurs outside this area,
but this effect can be neglected.

4.5 General Conclusion

Based on the previous conclusions the following image of
mixing in and around shallow cumulus clouds emerges.
This image is illustrated in figure 20 and suggests that
the cloud consists of three areas: a geometric core, a
buoyant core and a region where most of the mixing takes
place, near the cloud edge. Outside the cloud the shell
is responsible for the mixing. In the figure the shell is
illustrated by a oval which is a simplification of the reality.
Further away, in the far environment, mixing effects are
negligible. In this figure also the mixing points (as shown
before in figure 19) are indicated.
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FIG. 20: Illustration of the formed image of a cloud in
this thesis.
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