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ABSTRACT

In this study we systematically investigate the response
of dry convective boundary layers to non-stationary sur-
face heat fluxes. Not only is this relevant during sunset
and sunrise, but also when for example clouds modulate
incoming solar radiation. Because the timescale of the
associated change in surface heat fluxes may differ from
case to case, we consider in the present study the generic
situation of oscillatory surface heat fluxes with different
frequencies and amplitudes, and study the response of
the boundary layer in terms of transfer functions. To this
end we use both a Mixed Layer Model (MLM) and a Large
Eddy Simulation (LES) model, where the latter is used to
evaluate the predictive quality of the mixed layer model.
The mixed layer model performs generally quite well for
slow changes in the surface heat flux, and provides ana-
lytical understanding of the transfer characteristics of the
boundary layer such as amplitude and phase-lag. For
rapidly changing surface fluxes, i.e. changes within a
time frame comparable to the large eddy turn-over time, it
proves important to account for the time it takes for the in-
formation to travel from the surface to higher levels of the
boundary layer such as the inversion zone. As a follow-
up to the study of Sorbjan (1997) who showed that the
conventional convective velocity scale is inadequate as
scaling quantity during the decay phase, we address the
issue of defining, in (generic) transitional situations, a ve-
locity scale that is solely based on the surface heat flux
and its history.

1. INTRODUCTION

Realistic planetary boundary layers (PBL) are often in a
state of transition, adapting to changing boundary con-
ditions or large scale forcings. Examples are sunset
and sunrise, modulation of solar irradiance by clouds,
and large scale advection of air with different properties.
Knowledge of the behavior of transitional atmospheric
boundary layers is therefore as relevant as their steady
state counterparts.

The situation of decaying convective turbulence such as
occurs during sunset conditions was studied by Nieuw-
stadt and Brost (1986) using a Large Eddy Simulation
model. In this study the transition was rather abrupt as
the surface heat flux was simply switched off. Pino et al.
(2006) followed a similar approach and studied the influ-
ence of (steady) wind-shear during the convective decay.
In addition they analysed the characteristic length-scales
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of the velocity fields during the decay and showed that
the characteristic length scale of horizontal length scales
significantly increases during the transition as opposed
to the typical length-scale of the vertical velocity which
remains bounded by the boundary layer depth. The in-
creasing length-scales were shown to be responsible for
the relatively slow decay already observed by Nieuwstadt
and Brost (1986) (~ ¢t~ ™ with n close to 1 rather than
2). Instead of an abrupt change in the surface heat flux,
Sorbjan (1997) considered the more common situation
of a gradually decreasing surface flux following a cosine
shape, and pointed out that during the decay the convec-
tive velocity scale based on the actual surface flux was
a poor predictor of the actual velocity variances and tur-
bulence kinetic energy. This scaling issue has also been
studied based on real observations (Kumar et al., 2006)
during a diurnal cycle. In addition there have been studies
to the effects of a solar eclipse (Dolas et al., 2002; Girard-
Ardhuin et al., 2003) and also the turbulence decay during
an eclipse (Anfossi et al., 2004). Beare et al. (2006) stud-
ied the sunset transition using Large Eddy Simulation and
observations. A theoretical approach was conducted by
Goulart et al. (2003).

The problem of scaling during the diurnal cycle and es-
pecially the sunset phase forms the motivation of this re-
search. We focus on the response of a convective bound-
ary layer to changes in the surface heat flux. Not only is
this relevant during sunrise and sunset, but also when
for example clouds disturb the incoming solar radiation.
But because the timescale of the associated change in
surface heat fluxes may differ from case to case — sun-
rise/sunset rate for example is latitude and season de-
pendent and blocking of sunlight can occur on various
timescales— we consider in the present study the generic
situation of oscillatory surface heat fluxes with different
frequencies and amplitudes, and study the response of
the boundary layer in terms of transfer functions.

The approach to address this issue is to first create a
boundary layer which is in steady state and which subse-
quently gets perturbed by modifying the surface heat flux.
The results are analysed by looking at the response of the
mixed layer depth in terms of amplitude and phase differ-
ence. We employ both a Large Eddy Simulation (LES)
model and a Mixed Layer Model (MLM), where the LES is
used to evaluate the predictive quality of the mixed layer
model, while the mixed layer model helps providing fun-
damental insight into the characteristics of the boundary
layer system.



2. CASE AND MODEL DESCRIPTION
2.1 Case Description

We consider a dry convective boundary layer in absence
of mean wind and Coriolis force. The free atmosphere
is stably stratified with lapse rate I'. Turbulence is driven
by a positive surface heat flux ¢, initially taken constant
(= ¢0), which causes a well-mixed layer that deepens by
entrainment. This growth is counteracted by the presence
of subsidence w, which, for simplicity, is taken constant
with height, except for the lowest part of the PBL. To en-
sure a steady situation in the overlaying layer (free tro-
posphere) we have also introduced a constant radiative
cooling term R equal to:

R =w.T (1)
The profiles of (initial) potential temperature, subsidence

and radiation are shown in Fig. 1. Parameters values are
listed in Table 1.

Table 1: Input parameters for the LES

5120x5120x1920 m?
40x40x20 m?
128x128x96

' =0.006 Km™!

ws = 0.015ms™!
$o=0.06Kms™!

Domain Size L, x L, x L.
Grid size d» x dy x d.
Number of gridpoints
Lapse rate

Subsidence

Surface heat flux (steady)

2 2 2
1.8 18 18
16 16 16
1.4 14 1.4
12 12 12
N N N
0.8 0.8 0.8
0.6 0.6, 0.6
0.4 0.4 0.4
0.2 0.2 : 0.2
00 35 %o 0.01_, 0.02 % 5
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FiG. 1: The input profiles for the LES and MLM used in
this research.

2.2 Mixed Layer Model for stationary fluxes

The graphical interpretation of the case within the context
of a mixed layer model is shown in figure 2. Taking subsi-
dence and radiative cooling into account, we arrive at the
following equations for the mixed layer model:
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FiG. 2: The Mixed Layer Model according to this re-
search.
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where ¢. is the entrainment flux, w. is the entrainment
velocity, ws represents subsidence and R is the radiative
forcing in the mixed layer and the free atmosphere. Us-
ing a zero order model (Lilly, 1968) the entrainment flux
can be expressed in terms of the entrainment velocity and
inversion strength A

= We — Ws (4)

e = —weA (5)

To close the model the entrainment flux is assumed to
be a constant fraction of the surface flux (e.g. Ball, 1960;
Tennekes, 1973)

P = —Aps (6)
where A is the entrainment ratio with a typical value of
0.2-0.3. This results in a system governed by the follow-
ing equations:

0N _ ApT (1+A)ps _ |
ot A 2 = f(A, 2, ¢) (7)

and 0e A
aiz = zs —ws = g(A, zi, ¢5) (8)

2.3 Fixed points and stability in the case of a station-
ary heat flux

With a uniform (i.e. height independent) subsidence pro-
file, it is a priori unclear whether in general a steady state
can be reached. This question can be conveniently ad-
dressed by analysing the mixed layer model equations,
i.e. by finding the fixed points and classifying their stabil-
ity. In addition this provides information on the inherent
timescales of the system. Assuming a stationary surface
heat flux ¢s = ¢o the fixed points of the system (7,8) can
be determined by setting 22 = 221 = 0. This results in
only one fixed point solution (Ao, zio):

N
Ws
o = Ut (©)



We note in passing that these values together with (1)
imply that also %% = 0.

The local stability of the fixed point can be studied by
perturbing it slightly:

At) =00 +A'(t) with A’ < Ay

Zi (t) = 20 + Z; (t) with Z{ < zi0 (10)

Neglecting higher order terms of the perturbations one
arrives at the following form:

0 (A A
a(zg):J(AO,ZiO)(Zé) (11)
where J is the Jacobian
of  of
- (% ) 2
A  Oz;

and J(Ao, zi0) denotes the Jacobian in the fixed point
which is given by

2r 202
J(Do, zi0) = < f:z;o (1+A)¢o> (13)
~ Ado 0

The eigenvalues of the Jacobian, which reveal the stabil-
ity of the fixed point, are found to be

1(1+Ai\/m)rw§

2 A(L+ A)go

A2 = — (14)
Clearly the real parts of the eigenvalues are always neg-
ative which implies that the fixed point is uncondition-
ally stable. The eigenvalues are complex valued when
A > 1/3 indicative of (damped) oscillatory behavior. The
eigenvalues also give insight in the inherent timescales of
the system. When 0 < A < 1/3 there are two time-scales
given by the negative reciprocal value of the eigenvalues

o 24 o
T34/ 1 A) Tw?

When 1/3 < A < 1 the eigenvalues are complex valued
and the response timescale follows from the real part
r = 2400 (16)

Tw?

(15)

2.4 Fixed points and stability for the case of a non-
stationary heat flux

Similar calculations can be performed for a non-
stationary surface heat flux ¢s(t) = ¢o + ¢'(t) when we
assume that amplitude of the fluctuations are small. The
fixed point of the system is the same as for the stationary
case (9), but the (linearised) perturbed system now reads

o (A _ A o\

e (27,) = J(Ao, zio0, ¢o) (z;) + (8(9;9 ¢ (17)
where J(Ao, zi0, o) is again the Jacobian in the fixed
point. The driver of the system is ¢’; A’ and 2, respond

to this driver. Taking

¢/ _ q;eimt
A/ _ Aeiut
2 = Ze™t (18)

the system (17) becomes

() () (2)

This can be written as:
A 21 [0 -
(,73) = {‘](A07Z'i07¢0) _ZWI} ! (&) ¢ (20)
4 o)
where I is the unit matrix. Solving equation (20) gives the
responses A and Z; as a function of w
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A PRw2A(1+ A) — (21)
P ws (iwAgo + Tw?)(1+ A)d
P @RwA(L 4+ A) — T2w — igowlw2(1 + A)
Without loss of generality we can set ¢ = 1. Furthermore
it is convenient to express the response Z; in an amplitude
Z(w) = |%;| and phase difference ¥ (w):

5 = Z(w)e™r ™ (23)

(22)

We emphasize that the above expressions for the re-
sponse of the mixed layer to non-stationary fluxes are
derived for very small fluctuations around the basic state.
Since the original system is non-linear one cannot directly
generalise this behavior for larger amplitude variations. In
the next section both the LES and the mixed layer model
will be subjected to finite surface flux variations of the
form

(1) = do + a sin(wi) = do + a sin(%”t) (24)
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FiG. 3: Example of a non-stationary surface heat flux
oscillating with a period of T' = 4hr. Middle panel: Time
series of the inversion height as simulated by the LES
with an indication of the time-lag ¢; and amplitude of
transfer Z(w). Bottom panel: Time series of z; as re-
sulting from the mixed layer model (7,8).
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FiG. 4: The results of phase averaged of LES results with a non-stationary surface heat flux oscillating with a period
of T' = 4hr. The top two figures show the potential temperature, ¢ and the buoyancy flux, w’¢’. The bottom figures
shown the moments, w2 and 6’2 and the surface heat flux,¢;.

where « is the amplitude and w is the frequency of the
surface heat flux, T is the period of the surface heat flux
and ¢o is the average surface heat flux. « will be taken
as large as ¢o. The resulting response of the PBL will be
compared to the predictions of the linearized response
(22).

3. RESULTS
3.1 LES and standard Mixed Layer Model

Figure 3 shows an example of a periodically oscillating
heat flux using (24) with o = ¢¢ and period T' = 4hr; be-
low we have shown the evolution of z; as simulated with
the LES, where z; was determined by location the max-
imum gradient in the mean profile of 6 (Sullivan et al.,
1998). One can notice a significant delay ¢;, ~ 1hr be-
tween z; and ¢, which expressed in terms of the phase
difference ¥ reads:

L T
L= 2

(25)

We will study the phase lag as well as amplitude of the re-
sponse in more detail below, but first we show the mean
profiles of the LES at different stages in figure 4. The pe-

riodicity in the LES response enables us to compute so-
called phase averaged profiles of mean properties, fluxes
and variances. The benefit of phase averaging is that a
large number of samples can be collected by running the
simulation for a very long time, i.e. over many periods,
while conditioning the averages with respect to phase.
This greatly aids the statistical quality of the averages.

Based on the heat flux profile we have estimated the
value of the entrainment ratio A, which we determined by
extrapolating the linear part of the flux observed at z <
2z;/3 to the inversion height z;. A value of A ~ 0.34
was found in this way and was used in the mixed layer
model. The response of the mixed layer model is also
shown in Fig. 3. Clearly for this setting the mixed layer
model is very well capable of predicting the PBL depth for
an oscillating surface heat flux.

To get information on the PBL response for other
driving frequencies w = 27/T and amplitudes «, we have
conducted a comprehensive study to the corresponding
amplitudes Z(w) and phase differences ¥(w). Results of
the LES are presented in Figures 5(a) and 5(b) together
with the predictions (22,23) based on the linearized ver-
sion of the mixed layer model. One notices that the pre-
dictions of the response work quite well for slow changes,



i.e. w < 10~*s™! or T larger than ~ 17.5hr. This is inter-
esting because the predictions appear to work well even
for large amplitudes «, hence well outside the intended
working range of small amplitudes o < ¢o. Apparently
for slow changes the response of the essentially non-
linear mixed layer model (7,8), can be well approximated
by the linearized version of the model around the station-
ary state (Ao, 20) given by (9). Recall that this fixed-point
follows from the non-linear model. A second rather strik-
ing aspect is the appreciable phase difference for small w.
Even at w = 107°%s™! (T ~ 175hr) the phase difference
is about 7/4, corresponding to a time-lag of ¢, ~ 22hr.
Apparently the internal time scale of the boundary layer
system is quite large. Mathematically this can be under-
stood from the analysis of the eigenvalues of the system’s
Jacobian (14) and related timescale(s) (15) or (16), which
is proportional to 2A¢o/(T'w?) ~ 10hr. Physically this
large time-scale can be understood by realizing that the
(z:, A)—dynamics is governed by the entrainment velocity,
leading to a time-scale estimate of z;/w.. Steady state
considerations give w. = w;s and z;0 = ¢o/(I'ws), which
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FiG. 5: In these figures the analytical (linearised) solu-
tion of the standard mixed layer model (dashed lines) and
the results with different amplitudes of the LES (symbols)
are shown.

leads to t1, ~ ¢o/(Tw?). Both w, and T may differ some-
what from the values we have used here, but not much,
since the order of magnitude of subsidence w, iscm s~ !,
I is typically a few K km~* and surface fluxes are in the
range of 0.01-0.1K m s~*. This implies that the dynamics
that governs z; and A is much slower than the timescale
of turbulence (~15min) and even quite slow with respect
to the time-scale of the diurnal cycle itself. This in turn
implies that the system will always be in a transient state,
hardly adapted the new conditions set by sunrise, sunset,
or changed large-scale forcings.

Returning to Figures 5(a) and 5(b) once notices a
discrepancy between the MLM-predictions and the LES
results for fast changes, most clearly seen at the phase-
differences of the LES that tend to w, whereas the MLM
has a maximum phase difference of =/2. This is a nat-
ural consequence of the fact that the mixed layer model
assumes instantaneous mixing, while in reality (and LES)
the mixing is governed by the time-scales of turbulence.
When the surface heat flux changes at a rate compara-
ble to the time-scale of turbulence the situation becomes
more intricate. This issue is addressed in the next sec-
tion.

3.2 rapidly changing surface fluxes

For stationary surface heat fluxes the vertical velocity
variance, (w’)2>, can be well predicted (scaled) by the

Deardorff (e.g. Sullivan et al., 1998) convective velocity

scale: )
3

wio = | %5060 (8)

However for non-stationary surface heat fluxes the per-
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FIG. 6: A Lissajous diagram of (w}, )2, convective ve-
locity and <(w')2>.

formance of (26) is not ideal (Sorbjan, 1997). This aspect
is shown in Figure 6. When there is a good correlation (as
to be expected for a scaling quantity), the points would lie
on a line; for slowly changing fluxes (T = 8hr) this ap-
pears to be the case; however, for more rapidly changing
fluxes the graphs obtain a circular shape indicative of the



phase difference between the actual variance and the ac-
tual surface flux ¢s.

In order to improve the predictions of the mixed layer
model for rapidly changing surface fluxes and to come up
with a better prediction of the turbulence kinetic energy
(tke) levels and velocity variances, we expand the mixed
layer model with an extra equation that accounts for pro-
duction and dissipation:

Ok(t) _ P1) 7C€k(t)3/2

ot z @)

where C. is a constant and where k£ and P represent
mixed layer averages of tke and buoyancy production re-
spectively. The production term in this equation is mod-
eled by:

P(t) = Zl / " P, t)dz (28)
with

~ g z z

P(z,t) = o0 {1 (1+A) ZJ Os (t X\/E) (29)
In this equation the essential aspect resides in the term
—xz/v/'k which accounts for the time it takes for informa-
tion to travel from the surface to height z, where we have
assumed that the corresponding speed scales with k.
When the turbulence level is high, information travels fast,
but when k& is low it will take much longer before higher
levels can feel the changed surface properties. x is a con-
stant that can be chosen freely (once). The effect of hav-
ing the time delay in equation (29) is that the vertical pro-
files of the production can depart from the (quasi-steady)
linear form and potentially yield the S-shaped curves such
as observed in LES (Sorbjan, 1997). The curves follow-
ing from (29) at various instances are shown in figure 7.
The constant x in equation (29) was determined by com-
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FiG. 7: Scaled w6’ for a surface heat flux period of 4
hours, following equation (29) with x = 0.92. The effect
of the time delay provides the S-shaped curves.

paring the production calculated by LES with the produc-
tion calculated by equation (28). In this case we deter-
mined x = 0.92. The effect of having x in equation (28)

is shown in Figure 8. There is a nice correlation between
the results from LES and the modelled production. For
periodic functions ¢; the integral in (28) can still be an-
alytically solved. Now that there is a reasonable model
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Fig. 8: The effect of x in the production equation with
respect to the production of the LES results.

for the time-dependent buoyancy production, (27) can be

solved once the constant C. has been determined. This

is done by looking at the stationary state of equation (27),
ie.

~ Pozio

e — k3/2

(30)

where ( refers to the stationary state of the variable. Us-
ing LES values this resulted in a value of 1.921 for C..
Now equation (27) can be solved, in conjunction with the
other mixed layer model equations. The result of the ex-
tended MLM is shown in Figure 9 with respect to the tur-
bulence kinetic energy calculated using LES. The correla-
tion between the LES results and equation (27) appears
to be quite good. In Figure 10 the result is shown with
respect to the vertical velocity variance calculated using
LES, which should be compared to Figure 6. This result
shows that also for rapidly changing surface fluxes the ve-



locity variances can be anticipated using still a simple set (27). The constant v can be calculated by comparing the

of equations. scaling in steady state, which resulted in v = 3.33.
To summarise this method the following equations
R s : are solved in the extended mixed layer model:
0.9 J i
OA(t) ¢s + Awe
- =Tw. — —F— 4
0.8 ot w Z (34)
0.7F )
(‘\‘: 8,2»; (t o
o 2-6 Frak We — Ws (35)
»n 0.5
i k(1) k3/2
af —~ =P(t)—C: 36
0 o =Pt —C (36)
03r g 1 [* z z
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o1f (37)
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FiG. 9: The turbulence kinetic energy calculated using 105
equation (27) with respect to the turbulence kinetic en-
ergy calculated by LES.
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FiG. 10: The turbulence kinetic energy calculated us-
ing equation (27) versus <(w’)2>.
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Since it is possible to accurately model the turbu-
lence kinetic energy, we also used the prognostic value of
k in the parametrisation of the entrainment velocity. This
parametrisation starts with the usual equation for the en-
trainment velocity
We A 0 —7 —6 Ifs I—A I—3
= = 10 10 10 10 10
Wi Ri (31) wls™
where Ri is the Richardson number given by: (b) Phase difference of the new model.
. G)LOAZZ
Ri=—— (32) Fig. 11: In these figures the analytical (linearised) so-
wi

. . . lution of the extended MLM (solid lines) the solution of the
Rearranging these equations we have for the entrainment  new model with different amplitudes (open symbols) the
velocity: result of the standard MLM (dashed lines) and the results

w. — Aw? (33) with different amplitudes of the LES (symbols) are shown.
T EuA
O “t
The term w? represents the scaling velocity and should The result of the extended MLM is shown again in
3/2

thus be replaced by (vk)*/< where k is computed from transfer function and phase difference. These are shown



in Figures 11(a) and 11(b). The main difference between
the result of the standard MLM and the extended MLM
becomes clear in phase difference figure. The results of
the extended MLM give comparable results as the LES
result, ie. going to a phase difference of = for high fre-
quencies.

Also a more exotic surface heat flux was tested. The
surface heat flux implemented is a square wave and is
given by equation (39). The sudden jump in surface heat
flux can be compared with a total solar eclipse or the
modulation of the incoming solar radiation by a cloud.

() = 0.001 + (0.12 — 0.001) H (%mod 1- %) (39)

where H is the Heaviside function, T is the period of the
square wave, in this case the period is 4 hours.
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FiG. 12: The results of the extended MLM compared
to the LES results with a square wave as input. The top
graph shows the surface heat flux. The next figure are the
results of the turbulence kinetic energy. The third graph
are the results of the production. In bottom graph the
results of the inversion height.

The results of this surface heat flux are shown in Fig-
ure 12. Again the extended MLM is able to reproduce the
turbulence kinetic energy and the production with remark-
able similarity. The inversion height is a bit lower than in
the LES, but it is in phase and has the same amplitude as
the LES results.

4. DISCUSSION AND CONCLUSION

The standard MLM works well for slowly changing sur-
face fluxes. When the surface fluxes change with small
frequencies or large periods, i.e. w < 10~*s™* or T larger
than = 17.5hr, the standard MLM gives quite good predic-
tions. Both the transfer function and the phase difference
are comparable to the LES results. However for rapidly
changing surface fluxes the standard MLM is not able to
give the right predictions.

The non-linear mixed layer model can be very well ap-
proximated by the linearized version of the model. This is
remarkable, because the flux perturbations are well out-
side the range of small amplitudes, o« < ¢o. Apparently

the response for slow changes of the essentially non-
linear mixed layer model, can be approximated by the lin-
earized version of the model around its stationary state,
(Ao, ZiO)-

Very large timescales dominate the (A, z;)—dynamics.
The timescales range from a few hours until a day and
sometimes more. This is surprising, because usually the
timescale ¢* is used, which is roughly 15 minutes. For the
phase difference between the surface heat flux and the
inversion height, this timescale is even bigger. When im-
plementing a slowly changing surface heat flux the inver-
sion height always responds with a delay to the surface
heat flux. Only for extremely slowly varying surface heat
fluxes there is a vanishing delay.

The extended MLM works for slowly and rapidly changing
surface fluxes. When the standard MLM is expanded with
the equations for the turbulence kinetic energy and the
buoyancy production the model is also able to give good
predictions for rapidly changing surface fluxes. When
changing the surface flux very fast, i.e. a square wave,
the extended MLM is able to predict the turbulence ki-
netic energy and the production comparable to the LES
results.
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