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1. INTRODUCTION

The purpose of the current work is to develop and
evaluate the performance of a large-eddy simulation

(LES) solver in computing the atmospheric boundary

layer (ABL) over flat terrain under a variety of sta-
bility conditions, ranging from shear driven (neutral

stratification) to moderately convective (unstable strat-

ification). This colocated, unstructured, finite-volume
solver is developed using the OpenFOAM framework.

Although, to our knowledge, OpenFOAM has never
been used to perform LESs, its flexible, open source,

and parallel nature combined with its availability at no

cost, make it an ideal choice for this application. Data
from our ABL simulations, like those presented in this

work, will be used in our future work as precursors for

LESs of flow through wind farms consisting of multi-
megawatt wind turbines.

Over the past four decades, the atmospheric com-

munity has done much work using LES (in many cases
with a pseudo-spectral solver) to accurately simulate

the ABL. A few examples include the work of Dear-

dorff (1972), Moeng and Sullivan (1994), Mason and
Brown (1999), Khanna and Brasseur (1998), and Cui-

jpers and Duynkerke (1993). An objective of our work

is to use that knowledge to create an OpenFOAM-
based solver that can perform simulations with the

same accuracy as that achieved by the atmospheric

community. To assess our solvers’ performance, we
mainly compared our results to the LESs performed by

Moeng and Sullivan (1994) because their LES code,

which is outlined by Moeng (1984), is well proven, their
simulations are of a smaller grid size that is ideal for

this initial validation study, and the simulations are all
windy while ranging from neutral to unstable, which

is of interest in wind-farm modeling. We also com-
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pare energy spectra and isosurfaces depicting ABL

structure to the LESs of Khanna and Brasseur (1998),

which were also computed using the algorithm of Mo-
eng (1984). In developing and testing our LES code,

we will make use of a recent analysis (Brasseur and

Wei 2010) that explains the well-known inability for
LES to properly predict law-of-the-wall scaling and pro-

vides a design methodology to avoid this pathology.

Only a few researchers have performed LESs of
wind farm flows. Examples include the work of Ivanell

(2009), Calaf et al. (2010), and Stovall et al. (2010)

(Stovall used an OpenFOAM-based solver), but all of
these works are limited to neutrally-stratified condi-

tions. The wind farm LES framework of Porté-Angel

et al. (Porté-Agel et al. 2010; Conzemius et al. 2010)
is clearly capable of simulation in a variety of stability

conditions, though.

The eventual goal of our work is to perform wind-
farm LESs that will provide a better understanding of

both the interactions of wind turbine wakes with one

another and with the surrounding ABL. Current utility-
scale wind turbines have tower heights of 80 m to

100 m and rotor diameters of 70 m to 120 m. At

these tower heights and with such large rotor diam-
eters, utility-scale wind turbine blades can often cover

the entire atmospheric surface layer, which contains

the highest levels of shear in the mean wind. This
means that turbine rotor blades experience substan-

tial cyclic loading as they rotate. Additionally, each

turbine in a wind farm creates a wake that can affect
the performance and mechanical loads of the wind tur-

bines downstream. Turbine wakes interact with each
other and are significantly affected by the stability con-

dition of the surrounding ABL. For example, according

to Jensen (2007), power output data from the Horns
Rev Offshore Wind Farm, which is an 8 by 10 array of

2-MW turbines in the North Sea 14 km off the Danish

coast, shows that in a stable ABL, the farm’s efficiency
is 61%; in an unstable ABL, the farm’s efficiency dra-

matically increases to 74%. This is because an un-



stable ABL contains more turbulent kinetic energy that

has a greater potential to replace the low-momentum
air within a turbine’s wake with higher-momentum sur-

rounding air through turbulent mixing. Consequently,

in the unstable condition, the downstream rows of tur-
bines are fed higher-momentum air than in the sta-

ble condition, resulting in increased wind farm perfor-

mance. However, according to Wharton and Lundquist
(2010), in the absence of wakes, turbines perform

more efficiently in stable conditions.

Many aerodynamic and atmospheric phenomena

occur within large wind farms that are not well under-

stood. This lack of understanding is reflected by the
fact that wind farm developers consistently overpredict

the performance of large modern wind farms by 5% or

more (Johnson 2008). This lower performance can re-
sult in millions of dollars less revenue generated than

expected over the farm’s lifetime. Poor wake and at-

mospheric modeling is cited as one of the reasons for
this overprediction. Developers currently use tools de-

veloped in the 1980s and early 1990s, like that of Katic

et al. (1986) when wind turbines were much smaller,
that are simpler and less computationally-expensive

than computational fluid dynamics (CFD). A clearer

understanding of the aerodynamics and atmospheric
physics within large wind farms would allow for the cre-

ation of more accurate, lower-order wind farm planning

and design tools. LES has the potential to provide an
accurate, highly-resolved description of the flow field

through a wind farm. However, much work remains to
be done to establish a set of “best practices” for per-

forming wind-farm-scale LES. This involves the ability

to perform accurate LESs of canonical ABL flows, the
subject of this paper.

2. FLOW PHYSICS EQUATIONS AND MODELING

2.1 FILTERED GOVERNING EQUATIONS

The filtered incompressible Navier-Stokes equations

within a rotating frame of reference are used to per-

form these simulations. The momentum equation is

∂ūi

∂t
= − ∂

∂xj
(ūj ūi)−

∂RD
ij

∂xj
− ∂p̃

∂xi
(1)

−
(

∂p̃

∂xi

)d

+

(

1− �̄

�̄0

)

gi + �ij3f
cūj ,

where, ūi is the resolved Cartesian velocity field,
RD

ij = Rij − Rkk�ij/3 is the deviatoric part of the

sub-grid-scale (SGS) stress tensor and Rij is the SGS

stress tensor, p̃ = p̄/�0 +Rkk/3− giℎ is the deviation
of the resolved pressure from hydrostatic plus the con-

tribution from the SGS energy all normalized by the

density, �0 is the density, gi is the gravity vector, ℎ is

height above the surface, (∂p̃/∂xi)
d

is a spatially con-

stant driving pressure gradient term used to achieve a

specified mean geostrophic wind, �̄ is the resolved vir-

tual potential temperature, �̄0 is the reference virtual
potential temperature, �ijk is the alternating symbol,

f c is the Coriolis parameter, and the subscripts 1, 2,

and 3 refer to the x-, y-, and z-directions, respectively.
�̄0 is set to the initial virtual potential temperature be-

low the capping inversion of 300 K, gravity is set to

gi = (−9.81, 0, 0) m/s2, and the Coriolis parameter
is set to a typical mid-latitude value of 1.028 × 10−4

s−1. The Boussinesq approximation for buoyancy is

included through the fifth term on the right-hand side
of Equation 1.

The filtered continuity equation is

∂ūj

∂xj
= 0, (2)

and the filtered transport equation for virtual potential
temperature is

∂�̄

∂t
= − ∂

∂xj

(

ūj �̄
)

− ∂R�j

∂xj
, (3)

where R�j is the SGS potential temperature flux vec-

tor.

2.2 SUB-GRID-SCALE MODELING

The deviatoric SGS stress tensor found in the mo-
mentum equation (Equation 1) is modeled using

RD
ij = −�SGSS̄ij , (4)

where �SGS is the SGS viscosity, and

S̄ij =
1

2

(

∂ūi

∂xj
+

∂ūj

∂xi

)

(5)

is the resolved strain-rate tensor. The SGS temper-

ature flux vector found in the temperature equation

(Equation 3) is modeled using

R�j = −�SGSPrt ∂�̄

∂xj
, (6)

where Prt is the turbulent Prandtl number. In this case,Prt = 1/3, although this should be modified in the fu-

ture to follow the approach of Moeng (1984) in whichPrt is generally 1/3 but adjusted based on the sur-

rounding temperature stratification.

SGS viscosity is modeled using the Smagorinsky
(1963) model

�SGS = (CsΔ)2
(

2S̄ijS̄ij

)
1

2 , (7)

where Δ = (ΔxΔyΔz)
1

3 is the grid scale and Cs is
the model constant, which is set to OpenFOAM’s de-

fault value of 0.168.



2.3 BOUNDARY CONDITIONS

The conditions on the upper boundary are as fol-

lows: the temperature gradient is specified to be that
of the initial capping inversion profile; the velocity nor-

mal to the boundary and the gradient of the velocity

parallel to the boundary are zero; the pressure gradi-
ent is obtained from the momentum equation normal

to the boundary; and the gradient of SGS viscosity is
zero (a boundary condition on SGS viscosity is used

to indirectly specify the boundary condition of stress

for the reasons discussed in Section 3.3).

At the lower boundary, the temperature flux is pre-

scribed, the pressure gradient is again obtained from

the momentum equation normal to the boundary, and
the boundary normal velocity is zero. In the more com-

monly seen ABL codes in which the variables are stag-

gered, there is no need to specify velocity parallel to
the lower boundary. However, in this colocated code, a

horizontal velocity at the lower boundary is necessary

solely to compute velocity gradients at the cell centers
immediately adjacent to this boundary. This velocity

gradient is necessary for computing the SGS stress

tensor and SGS viscosity. The Monin-Obukhov sim-
ilarity law (Etling 1996, 400–402) involving the mean

velocity gradient is applied locally at each of these
cell centers to calculate local values of desired veloc-

ity gradient. Then, a velocity is applied at the lower

boundary face of each of these cells so that the numer-
ical gradient operation recovers the desired cell center

velocity gradient. In this study, friction velocity, u∗, is

specified. It is much more common, though, to spec-
ify surface roughness, z0, as in Paulson (1970). We

specified u∗ rather than z0 since Moeng and Sullivan

(1994) did not list the value of z0 specified in their sim-
ulations to which we compared our results, but they

did give the value of u∗ characteristic of each of their

simulations at the final time. In this way, we achieve
the same values of u∗ as Moeng and Sullivan (1994)

without iterating on a value of z0 that recovers the de-

sired u∗. (In future simulations, though, we desire to
specify z0 as did Moeng and Sullivan (1994)).

At the surface, z = 0, we apply the model of Schu-
mann (1975) to compute the total wall surface shear

stress vector

RD
13w

= −u2
∗

ū1(x, y, z1)

S(z1)
(8)

RD
23w

= −u2
∗

ū2(x, y, z1)

S(z1)
, (9)

where the subscript w refers to quantities at the

lower boundary and S(z1) is the magnitude of the

horizontally-averaged velocity vector (mean wind) at
the first grid level. Section 3.3 explains how this sur-

face stress is applied within our solver.

The boundary conditions for all quantities are peri-

odic in the horizontal directions.

3. NUMERICAL METHOD

3.1 THE OpenFOAM FRAMEWORK

OpenFOAM (Ope 2009b,a), an acronym for Open-

source F ield Operations And Manipulations, is a col-

lection of C++ libraries for solving complex physics
problems using the unstructured, colocated, finite-

volume formulation. It is not a dedicated CFD solver,

but rather a finite-volume toolbox or framework from
which one can more easily create a solver and bound-

ary conditions than if starting from scratch. It is this

versatility that led us to use OpenFOAM. We have
used version 1.6 in this work.

OpenFOAM volume integrates the equations it

solves and makes use of Gauss’ theorem wherever

possible to convert volume integrals to surface inte-
grals. It therefore requires not only cell-centered val-

ues of quantities, but also face-centered values. The

values of quantities on faces are approximated as con-
stant over the face, which limits the solver to second-

order spatial accuracy. OpenFOAM included many

methods for interpolation of quantities from cell centers
to cell faces, ranging from simple upwind and linear in-

terpolation to more sophisticated total variation dimin-

ishing (TVD) schemes. In this work, all interpolation to
cell faces is linear, which is equivalent to second-order

central differencing on uniform meshes. Gradients of
quantities, though, should be directly computed on cell

faces, which is crucial in implementing the method of

Rhie and Chow (1983) used to compute velocity fluxes
through cell faces to avoid the pressure-velocity de-

coupling that occurs with incompressible flow solvers

using colocated variables.

Although OpenFOAM is a toolbox, its source distri-
bution includes a variety of solvers for various types of

flow, including incompressible flow. OpenFOAM runs

in a Linux environment and is parallelized using the
Message Passing Interface (MPI). Because it is an un-

structured solver, the solution matrices resulting from

implicit discretization are sparse, but not necessarily
organized, so conjugate-gradient Krylov-subspace or

multigrid solvers with the option for preconditioning are

included in OpenFOAM.

3.2 THE PISO SOLUTION ALGORITHM

Many of the incompressible solvers included with

the OpenFOAM distribution are based on the PISO
(Pressure-Implicit with Splitting of Operations) algo-

rithm (Issa 1985). We used these solvers as a guide
to create our LES solver for ABL flows. The basic idea

of this algorithm is to solve the momentum equation

(Equation 1) such that the velocity vector and pres-
sure are treated implicitly in time to make the numerical

scheme more stable. However, in our solver, the buoy-

ant term, the SGS viscosity, and the Coriolis terms
are treated explicitly. Following the other OpenFOAM

PISO solvers, we numerically formulated the convec-



tive term of the momentum equation (the first term on

the right-hand side of Equation 1) by making the ve-
locity flux, �f = Sjf ūj∣f , explicit in time, where the

subscript f denotes linear interpolation of a quantity

to cell face f from the cell center, and Sjf is cell face
f ’s surface normal vector. In the finite-volume formu-

lation, the convective term is numerically integrated as

follows,

∫

V

∂

∂xj
(ūj ūi) dV ≈

∑

f

Sjf ūj∣f ūi∣f =
∑

f

�f ūi∣f ,

(10)
and is treated in time as

∑

f

�n
f ūi∣n+1

f , (11)

where n and n+1 are the old and new time levels, re-

spectively. The PISO algorithm then attempts to solve
the linear system

Cūn+1

i +
�

�xi
p̃n+1 = ri, (12)

where C is the resulting left-hand side matrix result-

ing from implicit time treatment, the �/�xi operator

denotes the numerical approximation for the gradi-
ent, and ri are any explicit right-hand side terms. Of

course, the solution of Equation 12 would require the

simultaneous solution of the momentum equation and
pressure equation, which enforces continuity, presum-

ably by some iterative method. The PISO algorithm re-

moves the need for iteration by first predicting the mo-
mentum equation with velocity treated implicitly in time

but with pressure treated explicitly. Then, a series of

corrector steps occur in which the pressure equation
is solved and the velocity is corrected explicitly. The

original implicit momentum equation is then satisfied

to second-order accuracy after two corrector steps.

The predictor step solves the following implicit linear
system

Cū∗

i = Aū∗

i +H ′ū∗

i = − �

�xi
p̃n + ri, (13)

where A is a matrix containing the diagonal terms of
C, H ′ is the matrix containing the off-diagonal terms

of C, and ∗ denotes the predicted quantity.

The first corrector step solves the explicit linear sys-

tem

Aū∗∗

i = − �

�xi
p̃∗∗+ri−H ′ū∗

i = − �

�xi
p̃∗∗+H∗

i , (14)

where H∗

i = ri − H ′ū∗

i and ∗∗ denotes the first cor-

rected quantities. To correct the velocity field, the

first corrected pressure field must be solved first us-
ing the discrete continuity equation, which states that

�/�xi (ū
∗∗

i ) = 0. Applying the same numerical di-

vergence operator used in the continuity equation to

Equation 14 results in a Poisson equation for the first
corrected pressure

�

�xi

(

�

�xi
A−1p̃∗∗

)

=
�

�xi

(

A−1H∗

i

)

. (15)

The second velocity corrector is

Aū∗∗∗

i = − �

�xi
p̃∗∗∗ +H∗∗

i , (16)

and the second pressure corrector is

�

�xi

(

�

�xi
A−1p̃∗∗∗

)

=
�

�xi

(

A−1H∗∗

i

)

. (17)

Crank-Nicholson time advancement is used for
the implicit velocity predictor, shown in Equation 13,

which is solved using a diagonal incomplete LU-

preconditioned bi-conjugate gradient solver.

The pressure Poisson corrector shown in Equa-

tion 15 is then solved. Here, a method like that
used by Rhie and Chow (1983) to compute velocity

fluxes at cell faces (as opposed to simply interpolat-

ing cell centered values of velocity to the faces) and
a compact Laplacian stencil are necessary to avoid

pressure-velocity decoupling as seen with pressure-

bases solvers in which the variables are colocated on
the mesh. Rhie-Chow interpolation is implemented by

first computing the quantity A−1H∗

i , and then linearly

interpolating it to the cell faces. In effect, the velocity
flux without the influence of the pressure gradient has

been computed, which we will call �−p̃∣f .

The discrete divergence operator of the continuity
equation applied on the right-hand side of Equation

15 uses the face values of A−1H∗

i which is the quan-
tity �−p̃∣f that has just been computed. The discrete

divergence operator of the continuity equation is also

applied to the discrete gradient operator acting on the
pressure found in left-hand side of Equation 15. This

successive application of discrete operators would first

compute the pressure gradient at the cell centers and
interpolate them to the cell faces, and then difference

those cell face gradients. As a result, the stencil

only includes every other cell center value of pressure,
which aides in the pressure-velocity decoupling pro-

cess.

To circumvent this problem, the left-hand side term
of Equation 15 is evaluated by finding the pressure

gradient at the cell faces directly using the cell cen-
ter values of pressure, rather than interpolating the cell

center values of gradient of pressure. This introduces

an inconsistency in the treatment of the gradient op-
erators in the momentum and pressure equations, but

according to Ferziger and Perić (2002, p. 200), the er-

ror introduced is of the same magnitude of the basic
discretization and does not add significantly to the dis-

cretization error. However, the scheme is not able to



conserve energy that may cause instabilities, though

we have not observed instabilities of this sort.

Once Equation 15 for the pressure corrector is iter-

atively solved using a diagonal incomplete Cholesky-

preconditioned conjugate gradient solver, the contribu-
tion to the velocity flux by the surface normal pres-

sure gradient, �+p̃∣f = (�p̃/�xi)Sif , which is di-

rectly computed at the cell faces, is subtracted from
�−p̃∣f resulting in the actual velocity flux at the face,

�f = �−p̃∣f − �+p̃∣f . This completes the Rhie-Chow

interpolation.

The cell-centered �p̃/�xi is then reconstructed from

the surface normal pressure gradient using

�

�xi
p̃ =

∑

f

�+p̃∣f
Sif

∣Sif ∣
⋅

⎛

⎝

∑

f

S2
if

∣Sif ∣

⎞

⎠

−1

, (18)

where S2
if

is an element-wise squaring of the cell face

normal vectors.

Last, the cell-centered velocity is computed using

ū∗

i ∗ = A−1H∗

i − A−1�p̃/�xi. Issa (1985) states that
two corrector steps are necessary to approximate the

solution of Equation 12 to second-order accuracy in

time, which is the same as the order of accuracy of
the Crank-Nicholson time advancement used in that

equation.

At this point, Equations 3 and 7 for resolved poten-
tial temperature and SGS viscosity, respectively, are

solved. The convective term of the temperature equa-

tion is now linear because the velocity at time step n+1
is already known, and the equation is solved implic-

itly with Crank-Nicholson time advancement. The re-

sulting system of equations is iteratively solved using
a diagonal incomplete LU-preconditioned bi-conjugate

gradient solver.

3.3 IMPLEMENTATION OF THE STRESS TERM

The SGS stress term in Equation 1 (the second term

on right-hand side) should not be differenced using the

numerical operation �/�xj

(

RD
ij

)

. The resulting stencil
uses the velocity at every other cell on a uniform mesh,

which causes an undesirable “checker-board” velocity

instability to arise. Instead, the SGS stress term can
be recast by inserting the linear relationship between

the SGS viscosity and the resolved strain-rate of Equa-

tion 4 resulting in

∂

∂xj
RD

ij = − ∂

∂xj

(

�SGS ∂ūi

∂xj

)

(19)

− ∂

∂xj

[

�SGS

(

∂ūj

∂xi
− 2

3

∂ūk

∂xk
�ij

)]

,

where �ij is the Kronecker delta. The dominant term

of this formulation is the first one on the right-hand
side. It is differenced much like the Laplacian in the

pressure equation by first evaluating the velocity gra-

dient at cell faces directly, rather than evaluating them

at cell centers and interpolating to the faces, and then
applying the divergence operator directly to them. This

discretization method results in a stencil of Δx rather

than 2Δx and eliminates the checker-board instabili-
ties; however, it limits the solver to SGS stress models

based on the relationship in Equation 4.

As discussed in Section 2.3, we use the model of
Schumann (1975) to compute surface shear stress

vector, but as Equation 19 shows, stress does not di-
rectly enter the equations that are solved numerically.

By transforming (at each cell adjacent to the lower

boundary) into a coordinate system that lies in the bot-
tom boundary plane and that is aligned with the local

resolved velocity at the cell-center height, z1, and then

equating the right-hand sides of Equations 4 and 9,
the following results:

(

�SGS ∂Ū

∂z

)∣

∣

∣

∣

w

= u2
∗

Ū(x, y, z1)

S(z1)
, (20)

where Ū = ∣ūi∣ is the magnitude of the resolved ve-

locity vector. Because we have to apply a bound-
ary condition on velocity at the lower surface as dis-

cussed in Section 2.3, a one-sided difference can be

used to compute a value for ∂Ū/∂z∣w(x, y) at each
cell face adjacent to the lower boundary. Then a value

of �SGS
w (x, y) can be chosen such that the product of

�SGS
w (x, y) and ∂Ū/∂z(x, y) is as specified by Schu-

mann’s surface stress model as formulated in Equa-

tion 20. It is not important that the values of �SGS
w

and ∂Ū/∂z∣w(x, y) be accurate on their own, but their
product must equal the surface stress of Schumann’s

model. In this way, �SGS
w (x, y) is used as a lower

boundary condition for �SGS such that, indirectly, our
stress term, given on the right-hand side of Equation

19, recovers the desired surface stress. Consistent

with staggered grid boundary layer methods (Moeng
1984), we do not apply no slip to ūi at the surface.

Instead, we have derived an equation for (ūi)w con-

sistent with the staggered grid formulation.

4. CASES SIMULATED

The four cases simulated range from completely

shear driven to moderately convective, and corre-

spond to those simulated by Moeng and Sullivan
(1994) (which we will refer to as MS94 from this point

forward). All cases are windy (no completely buoy-
ant cases), which are of interest in wind-farm model-

ing. Differences between our simulations and those

of MS94 include the use of a finite-volume solver ver-
sus their pseudo-spectral one, use of the Smagorinsky

model instead of their one-equation SGS model, use

of the surface stress model of Schumann (1975) ver-
sus that of Moeng (1984), a less sophisticated formu-

lation of Prt, and a different number of computational



Table 1. A description of the cases simulated.

Dx(Dy) Dz Qs u∗ Ug Tnom

Name (km) (km) (K⋅ m/s) (m/s) (m/s) (s)

B 5 2 0.24 0.56 10.0 9000

S 3 1 0.00 0.50 15.0 15 225

SB1 3 1 0.05 0.59 15.0 9300

SB2 3 1 0.03 0.56 15.0 10 000

mesh volumes. We also do not include dealiasing by
truncation as done in pseudo-spectral codes. Eventu-

ally, changes can be made to our code to make a more

direct comparison.

Table 1 outlines the four cases run. Dx, Dy, and

Dz are the streamwise, spanwise, and vertical dimen-

sions of the domains, Qs is the specified surface po-
tential temperature flux, u∗ is the friction velocity, Ug

is the geostrophic wind at the top of the domain, and

Tnom is the time at which we begin to save data for our
analysis. The geostrophic wind is maintained through

the adjustment of the driving pressure gradient of the

momentum equation (Equation 1). In all cases, we use
a mesh of Nx×Ny ×Nz = 160× 160× 128, whereas

MS94 used 96 grid points in all directions for all cases.
As discussed in Section 2.3, because MS94 did not

list the roughness height, z0, prescribed in their simu-

lations but do give the resulting values of u∗ at the end
of their simulations, we directly prescribe these values

of u∗ listed for each of MS94’s corresponding cases.

All cases have an initial temperature field contain-
ing a capping inversion. The virtual potential tempera-

ture is 300 K up to an initial capping inversion height,

zi0 , and then it increases linearly by 8 K over the next
83 m (or 167 m in case B) followed by an increase of

0.003 K/m to the top of the domain. The initial capping

inversion height is 468 m (937 m in case B). The ini-
tial velocity field is perturbed in a divergence-free way

(de Villiers 2006, p. 163) only near the lower bound-

ary in order to initiate turbulence in the solution. In all
cases, the time step is 0.25 s, which corresponds to a

maximum Courant-Friedrichs-Lewy (CFL) number of

roughly 0.23 except for case B in which the maximum
CFL number is 0.10.

5. RESULTS

To compare our work with that of MS94, we saved

data beginning at MS94’s stated simulation end times
for the next 1000 s every 200 s. These end times are

9300 s, 15 225 s, 9000 s, and 10 000 s for cases B,

S, SB1, and SB2, respectively. For example, in case
SB2, data were saved at 10 000 s, 10 200 s, 10 400

s, 10 600 s, 10 800 s, and 11 000 s. Using these

data, we created vertical profiles from both horizontal
averages and time averages. We also created two-

dimensional variance spectra at various vertical levels

and averaged in time. Instantaneous slices or isocon-
tours, however, were taken only at the stated end time.

5.1 STATISTICS

Various statistics for each of our simulations are pre-
sented in Table 2 along with the statistics of MS94’s

simulations. The percent difference between our

statistics and those of MS94 are shown at the bot-
tom of the table. The statistics shown are the convec-

tive velocity, w∗; the ABL height defined as the height

of the maximum negative temperature flux due to the
capping inversion, zi; the stability parameter, −zi/L,

where L is the Obukov length; the large-eddy turnover

time, �∗; the virtual potential temperature flux at the
top of the ABL, ⟨w′�′⟩zi ; the horizontally-averaged

wind speed at the height of MS94’s first grid level,

S(z1); the horizontally-averaged difference in temper-
ature between the surface and the height of MS94’s

first grid level, Δ�(z1); and the turbulent kinetic energy

at a standard turbine hub height of z = 80 m, k(z80).
The convective velocity is defined as

w∗ =
( g

�̄0
Qszi

)1/3

, (21)

where g is the magnitude of the gravity vector. The
Obuhkov length is

L = − �̄0u3
∗

gQs�
, (22)

where � is the von Kármán constant, which is taken
as 0.4. For the shear-driven case, �∗ = zi/u∗, but for

all other cases in which convection is present, �∗ =
zi/w∗.

Table 2 shows that our shear-driven simulation S

has the largest percent difference between that of

MS94. Interestingly, the ABL height predicted in this
work is much lower than that predicted by MS94 for

simulation S. This occurs because, in our simulation S,
the fairly sharp transition in the initial temperature pro-

file at the start of the capping inversion is smoothed

with time as shown in Figure 1. In effect, the height
of the start of the capping inversion is decreased with

time, which lowers the top of the ABL with time and

causes a 33.8% difference between our simulation’s
height and that of MS94. This, in effect, causes a

large difference in predicted large-eddy turnover time.



Table 2. Internal parameters of the current simulations and those of Moeng and Sullivan (1994) at the final simulation times stated by Moeng

and Sullivan. Also included are the percent differences between our data and Moeng and Sullivan’s data.

w∗ zi −zi/L �∗ ⟨w′�′⟩zi S(z1) Δ�̄(z1) k(z80)
Name (m/s) (m) (m) (s) (K - m/s) (m/s) (K) (m/s)2

B 1.99 1008 18 506 -0.036 6.2 0.30 2.99

Current S 0 324.2 0 633 -0.014 4.5 0 0.77

Work SB1 0.88 425.8 1.3 475 -0.020 5.7 0.06 1.07

SB2 0.73 371.1 0.9 541 -0.014 5.5 0.04 0.94

B 2.02 1030 18 510 -0.040 5.1 2.8

Moeng and S 0 478 0 956 -0.007 8.7 0

Sullivan (1994) SB1 0.94 498 1.6 530 -0.020 8.1 0.5

SB2 0.79 493 1.4 624 -0.016 8.2 0.3

B 1.36 2.1 0.1 1 8.400 21.7 89.2

Percent S 0 33.8 0 34 93.714 48.0 0

Difference SB1 6.29 16.1 16.8 10 0.950 29.4 87.8

SB2 7.75 20.0 37.0 13 12.313 33.1 87.0

This significant difference between our simulation and

theirs may be linked to the fact that we set the turbulent

Prandtl number, Prt, to 1/3, whereas MS94 use a Prt

that is sensitized to positive temperature stratification

to account for the small mixing length in stable regions,
as occurs in the capping inversion. Our value of the

turbulent Prandtl number, which is part of the poten-

tial temperature equation’s diffusion term coefficient
(see Equations 3 and 6), seems to cause too much

sub-grid-scale mixing of temperature in the inversion

possibly causing the strong smoothing of the temper-
ature profile. One would then suspect that MS94’s

LES code maintains the capping inversion profile bet-

ter than our current code. Possibly related is the fact
that the potential temperature flux predicted at the in-

version height in simulation S is about twice as great

as that predicted by MS94.

The statistics predicted for the buoyant simulation

B compare best overall to the corresponding statistics
predicted by MS94. The degree to which the com-

bined shear- and buoyancy-driven simulations’ statis-

tics compare to MS94’s statistics lie somewhere in be-
tween those for simulations S and B. In fact, simula-

tion SB2, which is more similar to the poorly perform-

ing simulation S, has a larger percent difference from
MS94 than does simulation SB1.

Interestingly, our predicted values of S(z1) do not

compare well to those of MS94. S(z1) for simulation
B is higher than that predicted by MS94, and S(z1) for

the other cases was predicted to be lower than those
of MS94. This discrepancy may be caused by the fact

that we used the stress model of Schumann (1975)

at the lower boundary, but MS94 used the nonlinear
model of Moeng (1984). Also of concern is that our

predicted differences in temperature between the sur-

face and the height of MS94’s first grid level are about
an order of magnitude smaller than those predicted by

MS94 for an unknown reason.
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Fig. 1. Vertical profiles of horizontally-averaged potential temper-

ature, ⟨�̄⟩, at various times. The arrows indicate the direction of

evolution of the profile with time.



One can see that as the amount of surface temper-

ature flux is increased, the amount of turbulent kinetic
energy that a turbine will encounter also increases.

Furthermore, the increased turbulent kinetic energy

will greatly affect the recovery length of the wind tur-
bines’ wakes and, therefore, the overall wind farm per-

formance.

5.2 VERTICAL PROFILES

Figure 2 compares horizontally-averaged velocity

profiles normalized by the geostrophic wind speed
for all simulations. These plots clearly show that

the shear-driven simulation S exhibits the horizon-

tal velocity,
√

⟨U⟩2 + ⟨V ⟩2, with greatest shear. The
buoyancy-driven simulation B has a velocity profile

with much less shear as a result of the enhanced ver-

tical mixing. The velocity profile predicted for simula-
tion B compares well to that predicted by MS94 (de-

noted with circle symbols). The profile from simulation

S does not compare as well, and we attribute the dif-
ference to the much reduced ABL height experienced

in our simulation. The profiles from simulations SB1
and SB2 are similar, but, as expected, the increased

amount of surface temperature flux in case SB1 leads

to more vertical mixing and a profile with less shear.
From a wind-energy perspective, velocity profiles with

greater shear across the rotor disk, as seen in simula-

tion S, cause cyclic loading on the turbine blades that
periodically rotate through regions of slower and faster

moving air.

Next, resolved velocity variances normalized by u2
∗

in the shear-driven case or w2
∗

in all other cases are
shown in Figure 3. Comparison to the total (resolved

plus sub-filter-scale) variances of MS94 are shown for

simulations S and B. It is important to note that a di-
rect comparison between our resolved variance pro-

files and the total variance profiles of MS94 cannot be

made because their profiles include the sub-filter-scale
contribution; however, some general observations can

be made. Although the predicted variances share

the same general trends as those of MS94 for cases
S and B, there are slight differences in magnitude.

As in MS94, our simulations predicted that for case

S, the profile of ⟨u′u′⟩ is greater than that of ⟨v′v′⟩,
which is greater than that of ⟨w′w′⟩. All of the pro-

files have greatest magnitude near the lower surface

around z/zi = 0.1. In contrast, the profiles for sim-
ulation B show that ⟨w′w′⟩ peaks around z/zi = 0.3
and those of ⟨u′u′⟩ and ⟨v′v′⟩ peak both very near the
lower surface and at the base of the capping inversion.

In simulation B, ⟨u′u′⟩ and ⟨v′v′⟩ are similar in magni-

tude. The profiles for simulations SB1 and SB2 are a
blend between those of simulations S and B. The pro-

files of the more convective case SB1 are more similar

to those of simulation B, whereas the profiles for the
more shear-driven simulation SB2 are more similar to

those of simulation S.

Figure 4 shows plots of resolved vertical momentum

fluxes and comparison to MS94 is provided for simula-
tions S and B. The MS94 data are of total vertical mo-

mentum flux; therefore, their profiles do not approach

zero near the ground, whereas our profiles do because
we do not include the sub-grid-scale contribution to the

momentum flux. Again, both cases agree qualitatively

well, but there are some discrepancies in magnitude,
which are more prevalent in case S. This may be be-

cause we are comparing resolved and total fluxes. The

momentum flux profiles from simulation B best match
those of MS94.

Figure 5 shows plots of resolved vertical flux of ve-

locity variance. Comparisons to MS94’s data are pro-

vided for simulations S and B. In this case, MS94
did not include the sub-grid-scale component because

LES does not provide this, so equal comparisons be-

tween our data and theirs may be made. The profile for
simulation B better matches MS94’s profile than does

that of simulation S. In simulation B, we predicted that

⟨w′3⟩ is greater than the other variance fluxes, and that
the ⟨w′u′2⟩ and ⟨w′v′2⟩ fluxes are nearly identical, sim-

ilar to what MS94 predicted. In simulation S, though,
we predicted that ⟨w′u′2⟩ and ⟨w′v′2⟩ are nearly iden-

tical, which does not agree with the predictions by

MS94. Our simulation shows that ⟨w′3⟩ has the small-
est values, which agrees with MS94. The profiles for

simulations SB1 and SB2 are similar to one another,

those of simulation SB1 being smaller in magnitude,
and resemble the profiles for MS94’s simulation S.

5.3 INSTANTANEOUS x-y CONTOURS

Figures 6 and 7 show x-y contours of u′ for simula-
tions S and SB1, respectively, and Figure 8 shows the

contours of w′ for simulation B. These contours are
shown at z/zi of 0.1, 0.2, 0.3, 0.5, and 0.8.

In the shear-driven simulation S, shown in Figure 6,
streak-like structures in the horizontal velocity fluctua-

tions are observed near the surface and are aligned

with the mean flow at that height. Because of the Cori-
olis force, the mean flow is directed at a roughly 45∘

angle to the x-direction. At z/zi = 0.5, however, the
structures are no longer apparent. This agrees well

with MS94’s simulation S, both in the characteristics

of the structures and the magnitude of the fluctuations.
Our grid is finer than that used by MS94, therefore it

captured smaller-scale structures.

In simulation SB1, a moderate level of surface tem-

perature flux is present, which gives rise to flow-
oriented roll cells. Evidence of these cells is present

in Figure 7. In the range 0.1 ≤ z/zi ≤ 0.3, low-speed

streaks of horizontal velocity are spaced by 2zi-3zi,
which is the experimentally observed spacing of the

roll cells (LeMone 1973). Although not shown here,

these low-speed streaks of horizontal velocity corre-
late well with streaks of positive vertical fluctuations,

providing more evidence that the roll cells are present.
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Fig. 2. Vertical profiles of horizontally-averaged resolved velocity for (a) simulation S, (b) simulation B, (c) simulation SB1, and (d) simulation

SB2.
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Fig. 3. Vertical profiles of horizontally-averaged resolved velocity variance for (a) simulation S, (b) simulation B, (c) simulation SB1, and (d)

simulation SB2.
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Fig. 4. Vertical profiles of horizontally-averaged resolved momentum fluxes for (a) simulation S, (b) simulation B, (c) simulation SB1, and (d)

simulation SB2.
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Fig. 5. Vertical profiles of horizontally-averaged resolved velocity variance fluxes for (a) simulation S, (b) simulation B, (c) simulation SB1,

and (d) simulation SB2.
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Fig. 6. Contours of x-directed horizontal velocity fluctuation, u′ (m/s), at various heights in x-y planes from simulation S. The entire x-y

domain extents of 3 km × 3 km are shown.



0.1zi 0.2zi

0.3zi 0.5zi

0.8zi

Fig. 7. Contours of x-directed horizontal velocity fluctuation, u′ (m/s), at various heights in x-y planes from simulation SB1. The entire x-y

domain extents of 3 km × 3 km are shown.
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Fig. 8. Contours of vertical velocity fluctuation, w′ (m/s), at various heights in x-y planes from simulation B. The entire x-y domain extents of

5 km × 5 km are shown.



At greater heights within the ABL, the low-speed re-

gions of the horizontal velocity become fairly equal in
width to the high-speed regions.

Figure 8 shows contours of vertical velocity fluc-

tuations for the buoyancy-driven simulation B. Here,

there are concentrated regions of positive vertical ve-
locity fluctuations and less dense regions of nega-

tive vertical fluctuations. The positive fluctuations are

larger in magnitude than the negative fluctuations,
which agrees well with the simulations of MS94. With

increasing height, the concentrated positive regions

change in character from long structures to clump-like
structures, similar to that observed in the correspond-

ing simulation of MS94.

5.4 SPECTRA

Figures 9 and 10 show spectra of energy con-

tained within the horizontal velocity fluctuations, ver-
tical velocity fluctuations, and virtual potential temper-

ature fluctuations for cases S and B, respectively, at

heights of z/zi = 0.1, 0.2, 0.3, 0.5, and 0.8. As
was done by Khanna and Brasseur (1998), a two-

dimensional fast Fourier transform is used to produce

a two-dimensional energy spectrum at a given height
in the flow field. Then, the spectral energy contained

within shells of constant wavenumber magnitude, k =√
k1 + k2, is computed to produce these logarithmic

plots of spectral energy versus wavenumber. Shown

in gray on each plot is the k
−5/3 line. This line is

shown to compare our spectra to the Kolmogorov -5/3
spectrum (Pope 2001, p. 200) for the inertial range of

turbulence scales.

Figure 9 shows that in the shear-driven simulation S,

in which −zi/L = 0, the amount of low wavenumber
(larger lengthscale) energy contained within the verti-

cal velocity fluctuations gradually increases with height

because the lengthscale of such fluctuations increase
with height above the surface. The same occurs, but

to a much lesser degree, with the low wavenumber

energy contained within the horizontal velocity fluctua-
tions. This behavior is seen in the spectra of the shear-

driven flow (−zi/L = 0.44) computed by Khanna and
Brasseur (1998, p. 722). The overall energy contained

in the potential temperature fluctuations increases with

height above the surface. This could be a result of
the mixing of cooler fluid with warmer fluid from the in-

version, which causes larger temperature fluctuations

near the capping inversion than near the surface. A
major difference between our spectra for simulation

S and those of Khanna and Brasseur (1998) for their

shear-driven simulation is that above z/zi = 0.25, the
spectra of Khanna and Brasseur (1998) show a clear

inertial range of -5/3 slope for both velocity and tem-

perature. Our shear-driven spectra do not follow a -5/3
slope at any height.

Figure 10 shows that in the case with greatest sur-

face temperature flux, simulation B, in which −zi/L =

18, the amount of low wavenumber energy contained

within the vertical velocity fluctuations increases in the
range 0.1 ≤ z/zi ≤ 0.3 and then remains fairly con-

stant, which is consistent with the spectra of Khanna

and Brasseur (1998, p. 731) in which −zi/L = 8.
This increase with height is, again, due to proximity

to the surface and the size of vertical velocity length-

scales that the surface permits. Unlike in simulation S,
there is no significant increase with height of the low

wavenumber energy contained in the horizontal veloc-

ity and potential temperature fluctuations, which is also
consistent with the spectra of Khanna and Brasseur

(1998) for their −zi/L = 8 case. Also unlike in simu-

lation S, the overall amount of energy contained within
the potential temperature fluctuations increases up to

z/zi = 0.2, and then remains fairly constant. This may
be due to the fact that the boundary layer in simulation

B is more well mixed, so the energy contained within

the horizontal velocity and potential temperature fluc-
tuations is more well mixed. Our spectra from sim-

ulation B more closely follow the -5/3 line, especially

above z/zi =0.3, than in simulation S. However, they
do not follow the -5/3 line as well as the spectra of

Khanna and Brasseur (1998).

The fact than our spectra for both simulations S and

B do not have a clear inertial range that follows the

-5/3 slope line is of concern. We do not currently
have an understanding as to why this is so, but will

explore this problem in the near future. One possibility
is that, because we are using a finite-volume solver,

which is inherently more numerically diffusive than a

pseudo-spectral solver, our simulations are reaching
the grid cut-off before the inertial range can be appre-

ciably represented. Performing simulations on a finer

grid would help validate this idea. The spectra for both
simulations S and B, show that the energy cut-off con-

sistently begins around a wavenumber of 0.06, which

corresponds to a wavelength of about 6Δx = 6Δy.

5.5 ABL STRUCTURE

Figure 11 shows flow visualizations that highlight

some of the structure present in these ABL flows. Fig-
ure 11 (a) is a visualization from case S. The blue

isosurfaces represent horizontal velocity fluctuation,

u′ = −3u∗ = −1.5 m/s, and the red isosurfaces
represent vertical velocity fluctuation, w′ = 0.6 m/s.

This visualization clearly shows the organized streak-

like, flow-aligned, horizontal structure within the low-
est region of the surface layer. Because this flow is

not buoyancy-driven, the vertical velocity fluctuations

do not follow an orderly structure; however, the larger
of these isosurfaces seems to emanate from regions

where there are horizontal velocity deficits (where the

blue isosurfaces lie). This compares well to that ob-
served in the LES of Khanna and Brasseur (1998).

Figure 11 (b) is a visualization from case SB1 in

which there is moderate surface heating. This visu-
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Fig. 9. Two-dimensional spectra of the energy contained in the horizontal velocity fluctuations, ℎ, the vertical velocity fluctuations, w, and the

virtual potential temperature fluctuations, �, taken at various heights in x-y planes from simulation S.
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Fig. 10. Two-dimensional spectra of the energy contained in the horizontal velocity fluctuations, ℎ, the vertical velocity fluctuations, w, and

the virtual potential temperature fluctuations, �, taken at various heights in x-y planes from simulation B.



alization well illustrates the roll cells present in this

simulation. The red isosurfaces represent vertical ve-
locity fluctuations, w′ = w∗ = 0.88 m/s. The loca-

tion of these isosurfaces corresponds to the upwelling

motion caused by two adjacent roll cells. Below the
isosurfaces is a contour plot of temperature. Darker

colors correspond to cooler temperatures, and lighter

colors correspond to warmer temperatures. There is a
clear correlation between regions of warmer tempera-

ture and positive vertical velocity fluctuations.

5.6 THE HIGH ACCURACY ZONE

Brasseur and Wei (2010) discuss the systematic
overshoot in

Φm(z) = �
z

u∗

∂U

∂z
, (23)

which commonly occurs in LESs of turbulent boundary

layers (here � is the von Kármán constant). In order
to capture law-of-the-wall (LOTW) scaling, this over-

shoot must be removed. Brasseur and Wei state that

the “negative consequences of the overshoot — spuri-
ous stream-wise coherence, large-eddy structure and

vertical transport — are enhanced by buoyancy.” They
also provide three criteria, in terms of nondimensional

parameters, that are necessary to remove the over-

shoot and provide Φm(z) that is constant through the
surface layer. The three criteria and their associated

nondimensional variables form a parameter space that

can be used to move LES into a “high-accuracy zone”
in which LOTW is captured.

The first criterion is that the resolved stress main-

tains dominance over the sub-grid-scale stress at the

first grid level, which can be stated mathematically as

ℜ =
TR(z1)

TS(z1)
=

√

⟨u′w′⟩2 + ⟨v′w′⟩2
√

R2
13

+R2
23

∼ O(1), (24)

where ℜ is the ratio of resolved to sub-grid-scale
stresses at the first grid level, TR(z1) and TS(z1)
are the resolved and sub-grid-scale horizontal shear

stresses, respectively, at the first grid level; ⟨u′w′⟩ and
⟨v′w′⟩ are the resolved horizontal momentum fluxes

at the first grid level; and R13 and R23 are the sub-

grid-scale momentum fluxes at the first grid level. The
second criterion is that inertia in the discretized LES

governing equation dominates friction caused by the

sub-grid-scale viscosity (and by the numerical algo-
rithm, which is impossible to completely quantify). This

is restated mathematically as

ReLES =
zi u∗

�SGS(z1)
> Re∗LES, (25)

where ReLES and Re∗LES are the actual and critical

LES Reynolds numbers, respectively. The third crite-
rion is that the number of grid levels within the bound-

ary layer provide a minimum vertical resolution, which

is restated as Nzi > N∗

zi where Nzi and N∗

zi are

the actual and critical number of grid levels within the
boundary layer, respectively. Brasseur and Wei state

that in performing LESs of the neutral ABL with the

Smagorinsky eddy viscosity closure, reasonable esti-
mates for ℜ∗, ReLES , and N∗

zi are 1, 350, and 45-50,

respectively. Moving an LES into the high-accuracy

zone by satisfaction of these criteria can be achieved
by adjusting the sub-grid-scale closure constant and

vertical resolution of the grid.

The subject of this section is to show how far the

current simulations are from the high-accuracy zone.
Because Brasseur and Wei (2010) only focused on the

neutral case, we do the same here. Because the ABL

continues to develop past the final time that MS94 sim-
ulated, we ran our simulation S until it reached a state

of better quasi-equilibrium, which is around 46 000 s.

Figure 12 is a plot of the Φm function (using � = 0.4),
and it shows that our simulation contains a prominent

overshoot in the profile at z/zi = 0.06; the simulation
is clearly not in the high-accuracy zone. For this sim-

ulation, ℜ = 0.09, ReLES = 100, and Nzi = 45. The

only criterion that has been met is the one for vertical
grid resolution.

In these simulations, we use a Smagorinsky con-
stant of Cs = 0.168, so it can be reduced to move

toward the high-accuracy zone. It will be interesting
to see how much the friction resulting from the finite-

volume formulation (as opposed to a less dissipative

pseudo-spectral scheme) contributes to the overshoot
and failure to capture LOTW scaling.

6. CONCLUSIONS AND FUTURE WORK

This work shows that the ABL simulations per-

formed with a second-order accurate, colocated, finite-

volume solver compare fairly well with those per-
formed by Moeng and Sullivan (1994) and Khanna and

Brasseur (1998) with their pseudo-spectral solvers.

However, there are some important differences that
must be reconciled in our solver before using it for

wind energy applications. One of the most important
differences is the fact that the energy spectra from our

simulations do not show the -5/3 cascade of energy in

the inertial range that is clearly seen in the spectra of
Khanna and Brasseur (1998). Also, our shear-driven

simulation S does not compare to the corresponding

simulation of Moeng and Sullivan (1994) as well as
does the more buoyant-driven cases.

This work highlights the fact that there are significant

rates of change occurring in vertical profiles of velocity,

variance, and fluxes of momentum and variance in the
vertical band where turbine rotors lie. It also highlights

the large differences between completely shear-driven

and shear-buoyancy-driven flow. Wind farms operate
in a variety of ABL stability conditions, so it is impor-

tant to be able to accurately model all of these cases.



(a)

(b)

Fig. 11. (a) Isosurfaces of x-directed velocity fluctuations for u′ = −3u∗ = −1.5 m/s (blue) and of vertical velocity fluctuations for w′ = 0.6

m/s from the shear-driven case S. (b) Isosurfaces of vertical velocity fluctuations for w′ = w∗ = 0.88 m/s (red) and a contour of temperature

� in which black denotes cooler temperature and white denotes warmer temperature from the shear-buoyancy-driven case SB1.
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Fig. 12. The non-dimensional velocity gradient function Φm from

simulation S at time 46 000 s.

Importantly, this work has demonstrated the high-level

of flexibility provided by the OpenFOAM framework in

creating solvers, boundary conditions, and closures
with relative ease compared to modifying an existing

code or writing one’s own code.

A next step in this work is to incorporate changes
to our code to make it more versatile and as simi-

lar as possible to the code used by Moeng and Sul-

livan (1994) such that a better comparison can be
made. This means that our code will need to incorpo-

rate the one-equation sub-grid-scale closure and sur-
face stress model described in Moeng (1984). Further-

more, validation against high quality field data taken

over fairly flat terrain should also be performed. It may
also be beneficial to create a solver that uses explicit

time advancement; that would make for a simpler al-

gorithm that may be easier to troubleshoot. Such an
explicit algorithm is used by Sullivan et al. (1996, 2000)

in their colocated pseudo-spectral code.

It is clear that these simulations are far from the
“high accuracy zone” described by Brasseur and Wei

(2010) and that law-of-the-wall scaling is not being

maintained throughout the surface layer as evidenced
by the overshoot in the Φm parameter observed in

these simulations. Work must be done to move these

simulations to the high accuracy zone and to investi-
gate how large a role numerical friction plays in keep-

ing the simulation from producing law-of-the-wall scal-

ing. Because this work is being done within a finite-
volume setting as it allows more flexibility for wind en-

ergy applications (i.e. nonperiodic boundaries), work
must be done to understand the grid resolution neces-

sary in the finite-volume setting relative to the pseudo-

spectral setting to obtain similar results.

Last, a model for turbines will be added to this solver

to perform wind-farm-scale LESs. ABL simulations,

like the ones performed here, will be used as precur-

sors to wind farm LESs using this solver. The turbine
model under consideration is the actuator line model

of Sørensen and Shen (2002).
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