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1. INTRODUCTION

An improved understanding of the interaction of
winds, waves, and currents in the upper ocean at scales
of individual waves and wave groups is needed to fur-
ther develop the next generation of climate, weather, and
wave forecast models. For example, coupled wind-wave-
ocean models (Chen et al., 2007; Black et al., 2007) are
viewed as critical tools for accurate prediction of tropi-
cal cyclone intensity and track forecasts, but these mod-
eling systems employ a suite of parameterizations that
are largely statistical descriptions of the wind-wave in-
teractions that generate the critical momentum and scalar
fluxes. These forecast models do not account for the im-
portant phase relationships between winds, waves and
currents, e.g., the spatial and temporal intermittency of
wave breaking that occurs in moderate to high winds
(see figure 1). Also, there is a growing appreciation
that wave-current interactions are important for the upper
ocean boundary layer (Sullivan and McWilliams, 2010),
and thus for climate predictions, and that remotely gener-
ated swell and non-equilibrium wave states can play an
important and critical role in the surface-layer dynam-
ics of the atmospheric planetary boundary layer (PBL)
(Hanley et al., 2010; Sullivan and McWilliams, 2010).

The present work describes our recent developments
in coupling a turbulence-resolving large-eddy simulation
(LES) of the atmospheric PBL to a three-dimensional
time-dependent resolved surface wavefield. This builds
on our past efforts which coupled a turbulent boundary-
layer flow with a single monochromatic wave (Sullivan
et al., 2000; Sullivan and McWilliams, 2002; Sullivan
et al., 2008). The computational method described here
allows for nearly arbitrary 3D wavefields, i.e., the sea
surface elevation h = h(x,y, t), as a surface boundary
condition. The spatial scales of the resolved turbulence
and waves are O(m) up to the scale of the PBL height.
At present, the waves are externally imposed based on
empirical wave spectra. Ultimately the wavefields will
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be direct observations of the sea surface from field cam-
paigns. High resolution simulations of PBL turbulence
in the presence of surface waves has the potential to pro-
vide new insight into the dynamics of air-sea coupling
at small scales. The jump in massively parallel compu-
tational resources facilitates the coupling of winds and
waves in turbulence resolving simulations.

2. LES ALGORITHM WITH MOVING WAVES

An LES model for an atmospheric PBL with a sta-
tionary undulating lower boundary is described in Sul-
livan et al. (2010). They outline the algorithm, numer-
ical details, code parallelization, and present results for
boundary-layer flows over and around two- and three-
dimensional orography. Here we build on those develop-
ments but focus on the additional complications caused
by the temporal movement of the 3D lower surface. In
the description of the model equations, given in Sec-
tion 2.2, the following notation is used: ρu denotes the
Cartesian components of momentum, θ is virtual poten-
tial temperature, e is the subgrid-scale energy, and Π is
the pressure variable. Quantities with an overbar ( ) are
interpreted as LES spatially filtered variables.

2.1 Coordinate transformation

We follow Sullivan et al. (2010) and adapt our
LES model with a flat bottom to the situation with a
three-dimensional time-dependent boundary shape h =
h(x,y, t) by applying a transformation to the physical
space coordinates (x,y,z) that maps them onto compu-
tational coordinates (ξ,η,ζ). The computational mesh
in physical space is surface following, non-orthogonal,
and time varying. Also, vertical gridlines are held fixed
at a particular (x,y) location on the surface but the lines
are permitted to undergo vertical translation as a func-
tion of time t, i.e., vertical gridlines are wave follow-
ing. The transformation which obeys these constraints
and maps the physical domain to a flat computational do-
main x ⇒ ξ is the rule:



Figure 1: Photograph of the sea surface generated by winds of approximately 15 m s−1 during the High Resolution
Air-Sea Interaction (Hi-Res) field campaign carried out in June 2010. Notice the extensive white capping generated
by large-scale plunging and spilling breakers and, in the foreground, a web of small-scale breakers. The photograph
is taken from the R/V Floating Instrument Platform (FLIP) courtesy of Tihomir Hristov. For a description of Hi-Res
see http://airsea.ucsd.edu/hires/.

τ = t (1a)
ξ = ξ(x) = x (1b)
η = η(y) = y (1c)
ζ = ζ(t,x,y,z) . (1d)

The differential metrics ∂xi/∂ξ j and ∂ξi/∂x j, which are
needed in formulating the LES model, are connected
through the mapping transformation. Thus given the
rules in (1) we have the reduced set of non-zero metric
relationships:

ζt = −ztJ (2a)
ζx = −zξJ (2b)
ζy = −zηJ (2c)
ζz = 1/zζ = J (2d)
ξx = ηy = 1 (2e)

where J is the Jacobian. The time dependence of the
mapping appears in (2a) where zt = ∂z/∂t is the grid
speed, i.e., the vertical velocity of individual gridpoints.

2.2 LES equations in curvilinear coordinates with
time dependence

The LES equations in curvilinear coordinates are de-
rived in a straightforward manner by applying the chain
rule for differentiation but we pay close attention to the
transformation of the material derivative D( )/Dt and the
mass conservation equation. The set of LES equations in
computational coordinates under the transformation (1)
and (2) are:
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The equations are expressed in strong conservation form
using the “contravariant flux” velocity

Ui =
u j

J
∂ξi

∂x j
. (4)

(3a) is the mass conservation (continuity) equation, (3c)
is the momentum transport equation, (3d) is the scalar
transport equation, (3e) is the subgrid-scale energy trans-
port equation, and (3f) is the pressure Poisson equa-
tion. The right hand sides of (3) model physical pro-
cesses in the marine atmospheric PBL, e.g., pressure
gradients, Coriolis rotation, divergence of subgrid-scale
fluxes, buoyancy, and in the case of the SGS e equation
also diffusion and dissipation.

The time dependence of the grid modifies the LES
equations: the Jacobian appears inside the time tendency
of each transport equation and as expected advection
contains a contribution from the grid movement, i.e., the
total vertical flux of variable ψ depends on the difference
between the physical velocity and grid speed (W − zt)ψ.
Also, as a consequence of writing the equations in strong
conservation form we need to satisfy (3b) which is a sim-
plified form of the so-called geometric or space conser-
vation law (GCL) first discussed by Thomas and Lom-
bard (1979). In our derivation, (3b) follows directly from
considering the unsteady form of the mass conservation
equation written in differential form. Thomas and Lom-
bard (1979) and also Demirdz̆ić and Perić (1990) derive
the GCL by considering an integral form of the equa-
tions of motion. Inspection of (3) shows that if the ve-
locity and scalar fields are set to constant values then
the left hand sides of (3c-e) reduce to (3b). Hence our
numerical method needs to satisfy our reduced form of
the GCL discretely in order to prevent artificial sources
and sinks from developing in the computational domain.
Thus, the mixed pseudospectral finite-differencing spa-
tial differencing evaluates the advective terms in (3c-e)
in flux form and not the rotational form used by Moeng
(1984) or skew-symmetric form used by Sullivan et al.
(2000).

We use (3b) with our Runge-Kutta time stepping
scheme in the following way: Given the wave height dis-
tribution at any future timestep, say tn+1, we first pick the
vertical distribution of gridpoints z(ξ,η,ζ, tn+1) based on
the computational domain height and h(ξ,η, tn+1). We
then insert the Runge-Kutta time stepping discretization
in (3b) and solve for the required matching grid speed
zt . Since our time stepping is explicit the value of zt di-
agnosed applies at the time level tn. In other words, if
the wavefield is imposed knowledge of its future shape
is needed to diagnose the grid speed at an earlier time.
This is analogous to our grid nesting scheme where the
vertical velocity at a future time is imposed on a nested
boundary (Sullivan et al., 1996).

We emphasize that the upper boundary of our compu-
tational domain is far from the lower surface and asymp-
totes to a flat level surface. As a result zt varies with
distance from the wave surface. This is different than
the scheme proposed by Chalikov (1998) where the grid
speed is equal to the vertical motion of the wavefield for
all z. This implies that the computational mesh at any ζ,
including the upper boundary, mimics the shape of the
lower surface. At the lower boundary z = h, the time rate
of change of the wavy surface is

zt ≡ ht = wo − hξuo − hηvo (5)

where (uo,vo,wo) are the orbital motions of the wave-
field. The kinematical boundary condition is then W −
zt = 0 so that there is no flow through the boundary. No-
tice the definition of W (z = h) given by (4) is consistent
with (5). The surface grid movement also leads to sub-
tleties in formulating the pressure Poisson equation and
its boundary conditions.

2.3 Wavefield prescription

To complete our marine PBL LES we need to pre-
scribe the surface wavefield. For the present computa-
tions we use empirical two-dimensional statistical wave
spectra (e.g., see Komen et al., 1994, p. 187)

E(k,φ) = S(k) D(k,φ) (6)

where the amplitude S(k) and directional D(k,φ) spectra
depend on the wavenumber k = |k| = |kx î + ky ĵ|, wave
direction φ and surface wind speed U10. For the ampli-
tude spectrum we choose the classic Pierson-Moskowitz
shape (Pierson and Moskowitz, 1964; Alves et al., 2003)
while a simple directional spectrum is designed to em-
phasize long-crested waves with their spanwise axis ori-
ented perpendicular to the wind direction D(k,φ) = (k ·
U)n. In physical space, the synthetic wavefield h(x,y, t)
is constructed from a sum of plane waves

h(x, t) = ∑
k

ĥ(k)exp [i(k ·x−ω t)] (7)

with the wave amplitudes ĥ(k) picked to match E(k,φ).
The phases are chosen from a Gaussian distribution. In-
side the LES, the wavefield is advanced in time using
the linear dispersion relation ω2 = gk once the initial
distribution of amplitudes is specified. (7) is efficiently
evaluated using 2D Fast Fourier Transforms. Figure 2
shows a typical instantaneous 3D wavefield that is in-
put at the bottom of the LES. Future computations will
use the detailed phase-resolved wave measurements col-
lected in the Hi-Res field campaign.



3. SIMULATIONS

A series of simulations with varying geostrophic
wind Ug = (5,7.5,10,15,20) m s−1 are carried out
for a neutrally-stratified marine PBL in a domain
(XL,YL,ZL) = (1200,1200,800) m using (Nx,Ny,Nz) =
(512,512,128) gridpoints; thus the horizontal grid spac-
ing 4x = 4y = 2.34 m and the first vertical level is 1
m above the water. A slice of the computational mesh
is given in figure 3. The initial temperature sound-
ing θ = 300 K up to the inversion height zi = 400 m,
beyond this height θ increases linearly at 3× 10−3 K
m−1. The surface heating Q∗ = 0, the surface rough-
ness zo = 0.0002 m, and the Coriolis parameter f = 10−4

s−1. The wavefield is built, as discussed in Section 2.3,
based on a wind speed of 15 m s−1 and the phase speed
of the peak in the spectrum Cp ∼ 18 m s−1. Thus the
suite of simulations allows us to examine a wide vari-
ation of wave age from swell dominated to near wind-
wave equilibrium. Table 1 lists bulk properties of the
simulations, viz., the geostrophic wind, wave age, and
friction velocity u∗. U10 is the reference wind speed at
a height of 10 m. The simulations are run for more than
50,000 timesteps using restart volumes with fully devel-
oped turbulence. The iteration count in the pressure Pois-
son solver is typically set to 30 and the calculations run
on either 512 or 1024 computational cores.

Table 1: Simulation properties

Run Ug (m s−1) Cp/U10 u∗ (m s−1)
A 5 4.8 0.124
B 7.5 3.4 0.187
C 10 2.8 0.228
D 15 1.9 0.338
E 20 1.5 0.452

4. RESULTS

Previous field observations (Grachev and Fairall,
2001; Smedman et al., 1999), turbulence closure mod-
eling (Hanley and Belcher, 2008; Makin, 2008), and our
own idealized LES (Sullivan et al., 2008) all show that
fast moving swell can induce marked changes in the
atmospheric surface layer winds, viz., an upward mo-
mentum flux from the ocean to the atmosphere, a low-
level wind maximum, and departures from law-of-the-
wall scaling. The preliminary LES computations per-
formed here over a more realistic sea surface are in good
qualitative agreement with the previous studies but sug-
gest the impact of swell on the surface layer winds is
sensitive to the content of the wave spectrum.

Figure 2: A snapshot of the wavefield height h(x,y, t)
that is imposed at the bottom of the LES code. h is
built from a sum of linear plane waves (7). Waves prop-
agate left to right according to the dispersion relation-
ship. The horizontal grid spacing matches the LES, i.e.,
4x =4y = 2.5 m. The color bar is in units of meters.

One of the surprising results from the present simula-
tions is the significant impact of swell on the coherence
and magnitude of the near-surface pressure fluctuations.
This is illustrated in figure 4 where we compare p′/ρ for
two levels of wind forcing Ug = (5,20) m s−1, i.e., a low-
wind situation with swell and a high wind case approach-
ing wind-wave equilibrium. The difference in the pres-
sure signals is striking and even more remarkable in ani-
mations of the pressure field. In the low-wind swell case
there is a very strong correlation between p′/ρ < 0 and
wave crests and similarly between p′/ρ > 0 and wave
troughs that extends over the depth of the surface layer.
Inspection of the flow visualization and animations re-
veals that the strong correlation persists across the range
of resolved waves, i.e., both large and small scale waves
appear to induce a similar pressure pattern. The coher-
ence of the wave induced pressure field can extend to 20
m or more depending on the amplitude of the underly-
ing wave. Also, the pressure signatures propagate at the
speed of the wavefield, additional evidence that the sig-
nals are generated by surface waves and not atmospheric
processes. These are clear signatures of “wave pumping”
by the surface wavefield on the atmosphere. The ampli-



Figure 3: An instantaneous x− z slice of the 3D time varying computational mesh in the lowest portion of the PBL.
The (ξ,η) gridlines become level surfaces at about 100 m above the water. Only a fraction of the grid is displayed.

tude of the wave spectrum (and hence the level of wave
forcing) is held constant in our simulations but the mag-
nitude of the turbulence, as measured by u∗, increases
substantially with increasing wind speed. The structure
of the near surface pressure field is a result of these two
competing effects. At low winds coherent pressure sig-
nals are generated by the wave motions when the turbu-
lence is weak but this coherence is destroyed by strong
turbulence at higher winds.

Figure 5 shows that the impact of wave age also ap-
pears in the vertical velocity fields. In the low-wind swell
regime we observe large-amplitude large-scale fluctua-
tions in w′. At higher winds the spatial coherence of w′

is destroyed by strong turbulence. Note each panel in
figure 5 is sampled at the sample height above the wave-
field. Also, the fields are made dimensionless by friction
velocity u∗ which further illustrates the strong impact of
the wave motions on the winds in the surface layer.

In figure 6 we compare vertical profiles of the mean
wind speed and turbulence variances for the different
simulations. These statistics are computed by averag-
ing in computational coordinates, i.e., across horizontal
planes at constant vertical height ζ. Similar to Sullivan
et al. (2008) we find that the wind speed and turbulence
variances depend on wave age. At high winds as the
simulations approach wind-wave equilibrium, the non-
dimensional wind profile 〈U〉/u∗ smoothly approaches
the variation predicted by law-of-the-wall. Significant
differences are observed for the cases dominated by
swell: the surface layer winds are accelerated compared
to rough wall scaling. As suggested by the flow visu-
alization, the turbulence variances respond to the wave
motion in dramatic ways. The horizontal and vertical
variances are significantly enhanced by the motion of the

wave surface in the low-wind cases. Even though the tur-
bulence is relatively weak the turbulence variances are
large near the wave surface due to wave pumping.

5. SUMMARY

A large-eddy simulation (LES) model for the marine
atmospheric planetary boundary layer (PBL) is coupled
to a 3D time-dependent surface gravity wavefield. A co-
ordinate transform from physical to computational space
is used that accounts for vertical movement of the mesh
in physical space. We use the geometric conservation
law (GCL) (Thomas and Lombard, 1979) to solve for the
grid speeds that enter into the advection of momentum
and scalars. The algorithm is used to carry out a se-
ries of simulations over a broadband moving wavefield
that conforms to a Pierson-Moskowitz wave spectrum.
The wave age Cp/U10 = [1.5,4.8] varies from near wind-
wave equilibrium to a low-wind swell dominated regime.
In the low wind cases we find features similar to previous
observational and modeling investigations: the surface
layer winds show clear departures from rough wall law-
of-the-wall scaling. The coherence and magnitude of the
pressure field p′/ρ depends critically on the motion of
the underlying wavefield and the turbulence level.
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Figure 4: Snapshot of static pressure fluctuations p′/ρ in an x− z plane near the water surface. The upper panel is a
swell dominated regime with wave age ∼ 4.8 while the lower panel is a case near wind-wave equilibrium with wave
age ∼ 1.4. The wave spectrum is a Pierson-Moskowitz spectrum. Notice the coherence between the wave field and
the pressure fluctuations in the case with swell. The color bar is in units of m s−2 and the range is different between
the two cases.
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