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1. INTRODUCTION

A wide spectrum of atmospheric motions impacts the
flow environment in and around wind farms. The im-
portant time and space scales span an enormous range,
large-scale long-time decadal climate down to rapidly
evolving thin boundary layers that grow on an individual
turbine blade (Schreck et al., 2008). In this scale hier-
archy, the atmospheric planetary boundary layer (PBL),
where the important scales range from O(m) or less to
O(km) or more, plays a critical if not dominant role in
setting the performance of an individual turbine as well
as the power output of an entire wind park. PBL mo-
tions are turbulent (three-dimensional and time depen-
dent) and couple to larger-scale atmospheric motions and
land use, e.g., weather events diurnal heating and cool-
ing, thermal stratification, surface roughness, vegetative
canopies, wind waves and local orography all influence
wind turbine performance to varying degrees. For exam-
ple, the afternoon collapse of the heated daytime PBL
over the Great Plains followed by surface cooling can
lead to a windy weakly stratified boundary layer with
a nocturnal jet positioned near hub height z ∼ 100 m
(Beare et al., 2006; Banta et al., 2008). Turbulence in
this regime is episodic, non-Gaussian, and can interact
with gravity waves and trigger Kelvin-Helmholtz insta-
bilities leading to intermittent loads that fatigue turbine
components (Kelley et al., 2003).

The objective of the present work is to describe our re-
cent developments in constructing and utilizing a large-
eddy simulation (LES) model for the atmospheric PBL
where the lower boundary shape is modestly complex,
i.e., we define modestly complex as orography of height
h to be a single valued function of the horizontal coor-
dinates h = h(x,y). This enhanced simulation capabil-
ity will allow us to examine basic interactions between
stratified PBL turbulence and landscape features, but also
provide information about the winds turbines might be
exposed to in a local undulating environment. Under-
standing the flow environment created by complex small-
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Figure 1: Cathedral Rocks wind farm located
above an escarpment on the Eyre Peninsula South
Australia adapted from http://www.yorkcivil.com.au/
projects/projects/49/cathedral rocks wind farm.

scale topography, as in figure 1, is of particular impor-
tance because steep slopes often generate high levels of
turbulence in zones of intermittent flow separation. Cou-
pled with background PBL turbulence this orographi-
cally generated turbulence can significantly restrict the
area available for turbine placement, in which the flow
conforms to turbine design standards (IEC, 2005; Ayotte,
2008). We emphasize that a complete simulation of all
the turbulence length and time scales generated by the
terrain in figure 1 far exceeds current computational ca-
pabilities.

2. LES ALGORITHM WITH SURFACE TER-
RAIN

2.1 LES with a flat lower boundary

Typical LES model equations for a dry Boussinesq
PBL include at a minimum: a) transport equations for
momentum ρu; b) a transport equation for a conserved
buoyancy variable (e.g., virtual potential temperature θ);
c) a discrete Poisson equation for a pressure variable
Π to enforce incompressibility; and closure expressions
for subgrid-scale (SGS) variables, e.g., a subgrid-scale
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equation for turbulent kinetic energy e. Our notation
denotes a resolved scale variable by an overbar ( ) and
thus u are spatially filtered Cartesian velocity compo-
nents. In our LES code with a flat boundary the spatial
discretization is second-order finite difference in the ver-
tical z direction and pseudospectral in horizontal x− y
planes. Thus a staggered arrangement of variables is
used with (u,v,Π,θ) stored at cell centers and (w,e) lo-
cated at cell faces; this variable layout is advantageous
because it tightly couples velocity and pressure in our in-
compressible formulation. The equations are integrated
forward in time using a fractional step method utilizing
dynamic time stepping with a fixed Courant-Fredrichs-
Lewy (CFL) number (Sullivan et al., 1996; Spalart et al.,
1991). The code parallelization is accomplished us-
ing the Message Passing Interface (MPI) and a 2D do-
main decomposition. Simulations have used as many as
16,384 computational cores for meshes with 30723 grid-
points (Sullivan and Patton, 2010).

2.2 Coordinate transformation

In order to adapt the LES model with a flat lower bot-
tom, outlined in Section 2.1, to an atmospheric PBL flow
with a varying boundary shape we apply a conventional
grid transformation to the LES equations. The transfor-
mation maps the surface following non-orthogonal mesh
onto a flat computational space xxx ⇒ ξξξ according to the
rule:

x = x(ξ) = ξ (1a)
y = y(η) = η (1b)
z = z(ξ,η,ζ) . (1c)

The Jacobian, which is needed to move between physical
and computational spaces, is (Anderson et al., 1984, see
Eq. 5-234)

J = det

∣∣∣∣∣∣
ξx 0 0
0 ηy 0
ζx ζy ζz

∣∣∣∣∣∣ = ξx ηy ζz = ζz . (2)

Several strategies are available for building the com-
putational mesh in physical space. Most often we em-
ploy simple algebraic stretching (e.g., Anderson et al.,
1984, see page 358). This technique builds a smoothly
varying mesh along each vertical coordinate line. The
stretching factor K =4zk+1/4zk is the grid spacing ra-
tio between neighboring k and k + 1 vertical gridpoints.
A typical value is K ∼ 1.03 or less when 4z1 = 1 m and
the top of the domain is 1000 m and the number of verti-
cal gridpoints Nz = 256.

2.3 LES equations in curvilinear coordinates

The LES equations in curvilinear coordinates can be
derived in a straightforward fashion by applying the
chain rule for differentiation. The set of LES equations
written in computational coordinates under the transfor-
mation (1) and (2) are:
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The equations are expressed in strong conservation form
using the “contravariant flux” velocity

Ui =
u j

J
∂ξi

∂x j
. (4)

(3a) is the mass conservation (continuity) equation, (3b)
is the momentum transport equation, (3c) is the scalar
transport equation, (3d) is the subgrid-scale energy trans-
port equation, and (3e) is the pressure Poisson equation.
The right hand sides of (3) model physical processes in
the atmospheric PBL, e.g., pressure gradients, Coriolis
rotation, divergence of subgrid-scale fluxes, buoyancy,
and in the case of the SGS e equation also diffusion and
dissipation.

A key step in this formulation is co-locating the solu-
tion variables (u,Π,θ,e) at cell centers (Sullivan et al.,
2000, 2008) which leads to a simple compact differenc-
ing stencil. In order to maintain tight velocity-pressure
coupling the flux velocities (U,V ) are located at cell
centers while W is located at a cell face. This mim-
ics the variable layout in our usual staggered code with
a flat bottom. As in Sullivan et al. (2008) we use mo-
mentum interpolation to construct the intermediate right
hand sides for the flux velocities. Formally, the equa-
tion set (3) has the same structure as in the case with a
flat lower boundary and thus similar spatial and temporal
discretizations are used to advance them forward in time.
Thus the spatial differencing is pseudospectral in the hor-
izontal computational directions (ξ,η) and second-order
finite differences in the ζ-coordinate.

The major algorithmic change, compared to the flat
LES code, is the pressure formulation. As a conse-
quence of the incompressible flow assumption and the
non-orthogonal mesh we are forced to solve a general



Poisson equation (3e) for pressure. A direct solution of
(3e) is not possible. Inspection of (3a) and (3e) suggests
the stationary iteration scheme

D(Πi+1) = D(Πi) − 1
4t

∂

∂ξ j
U j(Πi) (5)

for Π where4t is the timestep the superscript i is an iter-
ation index and the operator D is an approximate diago-
nalization of the operator A : A is the complete left hand
side of (3e). At convergence D(Πi) = D(Πi+1) and (5)
numerically satisfies mass conservation. (5) is designed
so that it can be easily inverted using a combination of
2D Fast Fourier Transforms and tridiagonal matrix in-
versions. Furthermore it nicely maps onto our 2D MPI
parallelization.

The algorithm outlined above is a significant advance
over our previous scheme (Sullivan et al., 2000, 2008).
It uses a more general grid transformation that permits
3D lower boundary shapes, it has a more general and ro-
bust pressure solver, and it has an improved treatment of
the surface boundary conditions. We have used as many
as 4096 computational cores for high resolution simu-
lations, (1024× 384× 256) gridpoints, with the above
scheme. Further details of the algorithm including the
posing of the rough wall boundary conditions will be de-
scribed in a future publication.

3. SIMULATION STRATEGY

A series of LES are performed to highlight the in-
teractions between small-scale terrain and PBL turbu-
lence and to exercise the code for both two-dimensional
and three-dimensional surface shapes. In these compu-
tations, we simplify the external forcing compared to an
atmospheric PBL, i.e., we drive the flows with a con-
stant large-scale pressure gradient Px/ρ oriented along
the x−direction and turn off buoyancy influences. Hence
the simulations are similar in spirit to a wind tunnel con-
figuration. The lower surface is assumed to be fully
rough and we impose zo boundary conditions based on
the winds at the first gridpoint off the surface (e.g., Mo-
eng, 1984).

The simulations with terrain are computationally ex-
pensive compared to flat wall LES especially when the
slopes of the boundary shape are steep. In these simu-
lations, 20 to 30 iterations of (3e) are required to reduce
the residual of the continuity equation (3a) to near ma-
chine accuracy. This increases the computational time by
a factor of two or more compared to a flat wall simula-
tion. In addition, we use fine mesh resolution O(m) (see
below) and thus the timesteps are pushed to small values
by the CFL constraint in our shear driven computations.
Le and Moin (1991) and Zheng and Petzold (2006) pro-
pose fractional step schemes that require only a single

pressure projection step in their multi-stage Runge-Kutta
time stepping schemes which would potentially lower the
cost of including terrain in an incompressible LES.

To allow efficient simulations of the various flows de-
scribed in Section 4.2 we adopt the following strategy:
1) the simulations are first carried forward with a flat bot-
tom until the turbulence is fully developed and the hor-
izontally averaged momentum flux profile is linear in z
over the computational domain; 2) we then restart the
simulation with the curved lower bottom using a data
volume archived at late time from the flat wall case.
These simulations are then advanced in time until the
turbulence is nearly re-cycled through the computational
box. Thus our strategy mimics the conditions in a wind
tunnel where a boundary-layer first develops over a flat
wall and then encounters an obstacle far downstream
of the inlet. This simulation technique is hinted at by
Gong et al. (1996, see discussion starting on page 24)
and allows both spatial averaging over homogeneous di-
rections (e.g., the y−direction) and over a set of realiza-
tions. Multiple realizations can be created by simply re-
starting the terrain simulations using different initial vol-
umes from the flat wall case. The transient induced by in-
serting the bottom terrain is short lived and not analyzed.
The pressure solver is able to generate incompressible
flow in a single timestep after inserting the terrain since
it is developed from the discrete version of the continuity
equation.

4. SAMPLE RESULTS

4.1 Turbulent flow past two-dimensional shapes

Taylor (1998) provides the variation of form (pressure)
drag versus waveslope ak for linearized mean flow mod-
els with different turbulent closures. The bumps are two-
dimensional (no y variation) with shape h = a cos 2πx/λ:
the wavelength λ and wavenumber k are related by λ =
2π/k. We re-plot their results in figure 2. At low waves-
lope, ak < 0.17, the theoretical results are nearly inde-
pendent of the closure. Above ak > 0.3 the bumps are
steep and the linearized calculations tend to breakdown.

We perform 3D LES of a similar turbulent boundary-
layer flow over 2D sinusoidal bumps using a modest
grid mesh of (256,256,128) gridpoints with a relatively
small surface roughness λ/zo = 5× 105. The computa-
tions are carried out for four different waveslopes ak =
(0.1,0.25,0.35,0.5). At low ak the LES values closely
match the linearized calculations. The LES continues
to work smoothly for waveslopes as large as 0.5 (this
is the largest value tested). An additional LES with a
relatively large surface roughness λ/zo = 1×103 is also
shown in figure 2. This value of roughness causes large
flow separation with flow reattachment on the forward



face of the upstream wave. This is clearly observed in
the visualization of the pressure contours and flow vec-
tors. It is interesting that the pressure drag for the small
and large roughness are almost identical. We find that in
the large roughness case the flow above the bumps tends
to skip from crest-to-crest with relatively slow recircu-
lating flow in the wave troughs. In the small roughness
(non-separated) case the wave signature is clearly visible
in the vertical velocity field but is destroyed by vigor-
ous turbulence generated by flow separation in the large
roughness case (see figure 2).

4.2 Turbulent flow past three-dimensional shapes

Hills, ridges, bluffs, land-sea escarpments, etc. tend to
generate a local speedup in the boundary-layer winds and
thus are potential targets for wind turbine sites (see fig-
ure 1). Often these orographic features are geometrically
complex and 3D, i.e., with their characteristic horizontal
lengths and widths of similar scale. Thus it is important
to examine the structure of the boundary-layer winds in
the presence of 3D obstacles.

We compute turbulent flow over and around three
canonical shapes, viz., a hill, gap, and crater. This
demonstrates the LES code’s ability to handle mod-
estly complex 3D orography and further illustrates the
rich level of fluid dynamical phenomenon generated by
the interactions between boundary-layer turbulence and
small-scale landscape features. In the following sec-
tions, the boundary-layer flows are created using the
strategy described in Section 3. The simulation with a
flat wall is first run for about 130,000 timesteps which
is ∼ 7 large eddy turnover times. Each simulation uses
a unique lower-bottom shape and generates a terrain fol-
lowing grid using smooth vertical grid stretching. The
computational box (Lx,Ly,Lz) = (2560,640,1000) m the
number of gridpoints in the three coordinate directions
(Nx,Ny,Nz) = (1024,256,256) and the horizontal spac-
ing (4x,4y) = (2.5,2.5) m. The vertical spacing is 1
m at the surface and smoothly increases to the top of the
box. Approximately 40 gridpoints are located in the first
50 m above the surface. The large-scale pressure gra-
dient is set to Px/ρ = 1.6310−4 m s−2 which generates
winds of about 10.5 m s−1 at the top of the box. The sur-
face roughness zo = 0.05 m. The flow blockage is small
since h/Lz < 0.05 everywhere.

4.2.1 Isolated hill

An isolated 3D hill (see figure 3) is positioned in
the simulation with its summit located at (xc,yc) =
(1280,320) m. Geometrical properties of the cosine
shaped hill are: summit height of 50 m, maximum slope
of 0.6, characteristic length scale L = 67 m, and the max-

imum x−y planform is approximately a circle of diame-
ter equal to 4L = 268 m. The shape of the hill is

h(x′,y′) =
b
2

(
1+ cos

2πx′

4L

)(
1+ cos

2πy′

4L

)
(6)

where b = 25 m, x′ = x−xc, and (|x′|, |y′|) < 2L .
Figure 3 shows an instantaneous snapshot of typical

flow features that develop around the steep isolated hill.
The overall impression is that these flow patterns are
unique compared to a 2D case with similar characteris-
tic length scale L and maximum slope. First, a complex
flow separation pattern is generated – there is flow sep-
aration over the hill crest as in the 2D case but separa-
tion also occurs along the flanks of the hill. The region
of intense low pressure along the hill crest is confined
to a distance of about 2.5L in the y−direction. Anima-
tions show that the spanwise pressure pattern along the
line x′ = 0 is occasionally interrupted by tongues of low
pressure that arc around the hill sides in a crescent shape.

The most striking feature of this simulation however
is the complex multi-scale wake flow that develops aft
of the hill. It is a collection of temporally evolving vor-
tices with their primary axis aligned with z. At any time
there can be multiple vortices of various scales present
but often two larger vortices dominate the wake as shown
in figure 3. There is a strong return flow along the line
y′ = 0 separating the two vortices. Notice also that the
location of the vortices is well downstream of the hill
summit near the boundary where the hill flattens out and
blends into the flat surface; this is clearly downwind of
the region of maximum hill slope. Note we are using low
pressure as a criterion for vortex identification, see Lin
et al. (1996) for a comparison of methods. The coher-
ent rotation of the surface velocity vectors is additional
evidence that the regions of low pressure are indeed vor-
tical cores. Broadly, the mean flow patterns shown in
figure 3 are similar to the early stage of a flow around a
barchan sand dune described by Ortiz and Smolarkiewicz
(2009), and the flow measurements around an axisym-
metric bump reported by Byun and Simpson (2006).

4.2.2 Gap flow

Flows in gaps separating ridges and hills are a com-
mon landscape feature. The ability of the LES to simu-
late this type of turbulent flow is shown in figure 4. The
shape of the terrain is

h(x′,y′) =

{
b
2

(
1+ cos 2πx′

4L

)
F(y′) : |x′|< 2L

0 : |x′|> 2L
(7)



where the spanwise extent and depth of the gap are con-
trolled by the function

F(y′) =

{
1
2

(
1− cos 2πy′

4L

)
: |y′|< 2L

1 : |y′|> 2L
(8)

Figure 4 illustrates the speedup of the u− compo-
nent of the horizontal wind in a narrow gap. Notice the
speedup is largest in the region where the ridge begins to
blend into the gap floor, i.e., along the sides of the gap.
Visualization of the pressure field shows a similar feature
where the low pressure contours are most negative on the
slope approaching the valley and then become less neg-
ative away from the gap. The pattern is asymmetric in
time shifting from side-to-side in the gap. This is slightly
surprising since the initial expectation is that the winds
along the gap centerline would be highest. The vertical
y− z planes illustrate the vigorous flow separation aft of
the two ridges.

4.2.3 Crater flow

Boundary-layer flows in and above open and closed
basins are of importance for a variety of applications,
e.g., diffusion of pollutants. The recent METCRAX field
campaign (Whiteman and CoAuthors, 2008) focused on
the complex flow patterns generated by stably-stratified
flow in a closed basin. In figure 5 we show an example of
the LES code’s capability to simulate neutrally stratified
flow in an idealized closed crater whose shape h is given
by the negative of (6). The nominal diameter is 4L = 400
m, the depth equals 50 m, and the maximum slope equals
0.39. The crater center (xc,yc) = (1280,320) m.

The instantaneous snapshot of the flowfield in fig-
ure 5 shows several interesting and complex features.
The negative (low) pressure contours are indicators of
small-scale vortices located near the crater. Animations
show a rapid evolution of these vortical structures in
the crater interior. The high pressure contours are in-
dicators of the fluctuating re-attachment along the crater
backwall and the very negative pressure contours around
the crater rim are due to flow accelerations around the
crater lip. Visualization in x− z planes along the crater
centerline show intermittent ejections of fluid into the
overlying boundary-layer flow. We mention that strong
convergence of surface streamlines, e.g., as observed at
(x,y) = 1350,250) m in figure 5, is often an indicator of
3D flow separation (e.g., Byun and Simpson, 2006). The
flow patterns inside the crater are clearly distinct from
those generated behind an isolated hill in figure 3.

5. SUMMARY

A massively parallel algorithm and code for large-
eddy simulation (LES) of atmospheric planetary bound-

ary layers (PBLs) with modestly complex orography is
described. Our LES model equations adopt an incom-
pressible Boussinesq flow model with high Reynolds
number rough wall boundary conditions along the lower
boundary. A co-located variable layout and a conven-
tional coordinate transformation from physical to com-
putational space are used. The grid mesh in physical
space is terrain following and non-orthogonal, a more
general formulation can be incorporated into the scheme.
The key new step compared to a flat wall code is the
formulation of the pressure equation and designing an
algorithm for the solution of the pressure Poisson equa-
tion. The algorithm is sufficiently general to allow simu-
lations of PBLs over a spectrum of time dependent mov-
ing water waves (Sullivan et al., 2010). We present sev-
eral sample calculations of neutrally-stratified turbulent
flow, (similar to a wind-tunnel setup) past 2D sinusoidal
bumps and 3D obstacles, viz., a hill, gap, and crater.
These calculations highlight the importance of flow sep-
aration and coupling with background PBL turbulence,
and the ability of the algorithm to simulate turbulent
flows with an undulating lower boundary.

In the future we plan to implement an algebraic
stress closure model for subgrid-scale fluxes and vari-
ances (Wyngaard, 2004) and validate the code against
the wind-tunnel measurements of Ayotte and Hughes
(2004), and Gong et al. (1996), and field observations.
Also, PBL simulations will be carried out with unsta-
ble and stable stratification. The fine mesh large-eddy
simulations described here can be used in two ways: 1)
they provide insight about the fundamental interactions
between turbulence and terrain which can impact iso-
lated wind turbines and wind parks; and 2) the detailed
datasets can be used for building parameterizations of
separated flows.
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Figure 2: Turbulent flow over 2D sinusoidal bumps. The upper panel shows the pressure drag coefficient CD as
function of waveslope. CD is obtained from integration of the pressure-waveslope correlation and is normalized by the
friction velocity squared u2

∗. The lines are theoretical predictions from linearized calculations with different turbulence
closures at a small roughness λ/zo = 104 from Taylor (1998). The orange solid bullets are results from LES with a
similar small surface roughness λ/zo = 5× 105. The blue triangle is an LES with large surface roughness λ/zo =
1× 103 which leads to extensive flow separation between the wave crests. The lower panels are visualization of
vertical velocity w at a nominal height of z = 10 m above the bumps at waveslope ak = 0.5 from LES. The left and
right panels are small and large roughness λ/zo = (5×105,1×103), respectively. The color bar is in units of m s−1

and is different between the two plots.



Figure 3: Turbulent flow around a steep 3D hill. The upper left panel shows an oblique view of the hill with the
primary flow direction parallel to the x−direction. In the upper right panel we show the time averaged streamline
patterns around the hill at the height z = 5.6 m. In the lower panel we show color contours of fluctuating pressure p′/ρ

overlayed with horizontal flow vectors at a nominal height of z = 5.6 m above the hill surface. The color bar is in units
of m s−2. The planform of the hill (i.e., the location where the cosine shaped hill blends into the flat bottom boundary)
is approximately indicated by the circular white line. The hill summit h = 50 m is located at (xc,yc) = (1280,320) m.



Figure 4: Turbulent flow in a gap between two steep ridges. The primary flow direction is parallel to the x−direction.
Contours of the instantaneous u−velocity component are shown and the color bar is in units of m s−1. The two y− z
planes are located at x = (1500,2000) m, and the ridgeline is located at x = 1280 m. The horizontal plane is about 4
m off the surface. The lower 150 m of the boundary layer is depicted.



Figure 5: Neutrally stratified turbulent flow in a crater: The upper left panel is an oblique view of the crater geometry.
The upper right panel shows instantaneous static pressure contours p′/ρ and horizontal velocity vectors at a nominal
height of z = 2.5 m above the surface. The white circle is approximately the outline of the crater rim. The color bar
is in units of m s−2. The bottom panel is a 150 s time average of the streamlines and pressure field in an x− z plane
along the crater centerline.
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