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ABSTRACT

During the night turbulence can often be very intermittent,
occurring in sudden vigorous bursts after prolonged peri-
ods of low-intensity. Several mechanisms have been pro-
posed to explain intermittency. The present study focuses
on the role of porous surface elements, which influence
the mean wind profile near the surface and therefore the
shear characteristics. The shape of this profile plays a
vital role in the mechanism that causes the flow to desta-
bilize.

Direct numerical simulations of a pressure driven sta-
bly stratified flow are used to study the development of
initial instabilities into breaking waves and the possibility
of a subsequent collapse of turbulence and return to a
weakly turbulent state. To better understand the parame-
ter space associated with the occurrence of intermittency,
we conduct a linear stability analysis which provides crit-
ical values for the Richardson number in relation to the
canopy characteristics. This enables one to make an a-
priori educated guess of the conditions that favor inter-
mittency, which are subsequently studied in more detail
using the DNS.

1. INTRODUCTION

The behavior of the Stable Boundary Layer (SBL) can be
broadly classified into 3 different regimes. In the radia-
tive regime, turbulence is almost completely suppressed
by buoyancy. The temperature of the atmosphere is de-
termined by the exchange of longwave radiation with the
surface. When there is sufficient wind shear, on the other
hand, the boundary layer will remain turbulent in spite of
stable stratification.

A third type of behavior occurs when episodes of
strong and extremely weak turbulence flow alternate.
This intermittent behavior is quite common: during the
CASES-99 (Cooperative Atmosphere-Surface Exchange
Study) field experiment, for example, it occurred during
40 % of nights (Van de Wiel, 2002). The idea that the sur-
face layer may play a role in driving intermittency dates
back to the work work Blackader (1957) and Businger
(1973). They describe a local mechanism: when turbu-
lence is suppressed due to stratification, the mean wind
velocity above the surface can increase rapidly. However,
as the shear becomes higher, the gradient Richardson
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number decreases, and the flow becomes dynamically
unstable. A burst of turbulence occurs, energy is ex-
tracted from the mean flow, shear decreases and stratifi-
cation eventually overcomes turbulence. The collapse of
turbulence resulting from surface cooling has been stud-
ied in a one-dimensional model by Derbyshire (1999) and
Van de Wiel et al. (2007). Further studies showed that
intermittency can occur due to interaction between the
ground surface and the lower boundary layer. In the work
of Van de Wiel et al. (2002a and 2002b) and De Ronde
et al. (2008), the effect of a vegetation layer that responds
rapidly to temperature changes in the atmosphere was of
crucial importance.

In the present work, the possible role of canopy
waves in intermittency is investigated. The presence of
a canopy can strongly contribute to the generation of tur-
bulence in a stratified flow as the porous canopy layer
can create an inflection point in the mean wind profile.
The turbulence characteristics of the flow at the inflec-
tion point above a canopy are similar to that of a mixing
layer (e.g. Raupach et al. 1996). The influence of a
canopy in a stably stratified flow has been observed by
Shaw et al. (1988) and Lee et al. (1997). The latter study
found waves persisting over 10 to 80 cycles, a time scale
which was related to the persistence of wind shear above
the canopy layer.

Previous numerical simulations also looked into the
role of the canopy. The stability of an inviscid, stratified
flow over a canopy was studied by Lee (1997). A two-
dimensional simulation of stratified flow over a canopy
was performed by Hu et al. (2002), who found that wave
saturation occurred.

Direct Numerical Simulation has been applied before
to investigate the collapse of turbulence in a pressure
driven boundary layer under stratification by Nieuwstadt
(2005). Dörnbrack et al. (1995) used a DNS and an LES
to study the behavior of breaking gravity waves result-
ing from topography in the SBL. The DNS results showed
breaking gravity waves at the same critical level as the
LES. This problem is in many ways similar to the phe-
nomenon that is investigated here: canopies in a stable
atmosphere also generate waves at a critical level. The
breaking waves make it possible for turbulence to exist
even at low Reynolds numbers, and thus make the prob-
lem suitable for DNS.
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2. METHOD AND CASE

2.1 System of equations

We start from the Boussinesq equations for incompress-
ible flow. The flow is driven by a large scale pressure gra-
dient −δi1∂xP . Following Shaw and Schumann (1992), a
quadratic drag term is introduced in the momentum equa-
tion:

∂tui = − uj∂jui +
g

T0

θδi3 − δi1∂xP − ∂ip+

ν∂jjui − Cda(z)ui(ujuj)
1/2, (1a)

∂tθ = − uj∂jθ + κ∂jjθ, (1b)

∂iui =0. (1c)

Here, Cd is a drag coefficient and a(z) the foliage density.
We chose a foliage density that varies as a hyperbolic
tangent:

a(z) = amax

„

1

2
−

1

2
tanh

„

z − hcan

δ

««

(2)

The top and bottom of the domain are kept at constant
temperatures, and at the top a free-slip boundary condi-
tion is implemented. We introduce the following scales for
velocity, length, time, temperature and pressure:

Usc =

„

−H
dP

dx

«1/2

,

tsc = H/Usc,

Tsc = Ttop − Tbottom,

Psc = U2
sc.

This allows us to write a non-dimensional system of equa-
tions

∂tui = − uj∂jui + Riθδi3 + δi1 − ∂ip+

1

Re
∂jjui − Drα(z)ui(ujuj)

1/2, (4a)

∂tθ = − uj∂jθ +
1

PrRe
∂jjθ, (4b)

∂iui =0. (4c)

Here, Pr = ν/κ is the Prandtl number, Ri = gTscH/T0U
2
sc

the scaling Richardson number, Re = UscH/ν the scal-
ing Reynolds number and Dr = CdamaxH the Drag num-
ber. Note that the scaling Reynolds number is not based
on the maximum flow velocity. For example, the criti-
cal Reynolds number at which flow becomes turbulent in
plane channel flow is 75.97 (with the length scale cho-
sen as half the domain height to account for the no-slip
boundary condition at the top). Two further scales ap-
pear in the expression for the foliage density α(z) =
a(z)/amax: ∆ = δ/H is the non-dimensional canopy
transition height and Hcan = hcan/H the non-dimensional
canopy height.

2.2 Stability analysis

To predict the onset of instabilities, we write the equations
of motion in terms of a mean flow, which will be marked

with an overbar, and perturbations, denoted by primes.
We consider perturbations in the x, z-plane only. The lin-
earized evolution equations for the perturbations read:

∂tu
′ = − u∂xu′

− w′∂zu − ∂xp′ +
1

Re
[∂xx + ∂zz] u

′

−

2Druu′, (5a)

∂tw
′ = − u∂xw′ + Riθ′

− ∂zp′ +
1

Re
[∂xx + ∂zz] w

′

−

Druw′, (5b)

∂tθ
′ = − u∂xθ′

− w′∂zθ +
1

PrRe
[∂xx + ∂zz] θ

′, (5c)

∂xu′ + ∂zw′ = 0. (5d)

The mean flow is taken as a laminar flow, which is allowed
to evolve in time. The initial temperature profile is linear,
and we start with no mean velocity. For the calculation
of critical Reynolds numbers, a fully developed laminar
flow is considered. The perturbation analysis is similar to
that in Lee (1997), with the differences that viscosity and
thermal diffusion are taken into account and that there is
a prefactor 2 occurring in the horizontal drag term. An
expansion is made in Fourier eigenmodes:

u′

k (x, z, t) =∂zψ (z) eikx−ikcRt+kcI t,

w′

k (x, z, t) = − ikψ (z) eikx−ikcRt+kcI t,

θ′

k (x, z, t) =θ̂ (z) eikx−ikcRt+kcI t.

Here, ψ is a complex stream function and θ̂ a complex
temperature amplitude. c = cR+icI is the complex phase
speed of the wave and k is the wavenumber. Positive
values of cI correspond to unstable (growing) waves.

2.3 Direct Numerical Simulation

The DNS uses a second-order Adams-Bashforth time
scheme and a Poisson pressure solver. More details
on the numerics of the code are given in Van Reeuwijk
(2007). A uniform grid with 128 grid points in both hori-
zontal directions and 64 in the vertical was used. Since
the DNS is forced with the fastest growing perturbations
from the stability analysis, the domain length in the x-
direction Lx will be chosen as n (2π/kpref ), where n is
an integer and kpref is the wavenumber of the initially
fastest growing wave in the stability analysis. Results for
n = 1 (no subharmonics of the fastest growing mode) are
presented.

3. RESULTS AND DISCUSSION

3.1 Stability analysis

The stability analysis allows us to find a minimum scaling
Reynolds number for which instabilities are expected to
grow. It was decided to take Pr = 1 and study the effects
of Dr and Ri on the critical Reynolds number separately
from those of Hcan and ∆.

Figure 1 shows the dependence of the critical
Reynolds number on Dr and Ri when Hcan = 0.3 and
∆ = 0.06. The critical Reynolds number increases with
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FIG. 1: Critical Reynolds number dependence on Dr
and Ri.
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FIG. 2: Diagnosed minimum gradient Richardson num-
ber as function of Dr and Ri.
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the scaling Richardson number, as turbulence is sup-
pressed further at higher stability. As for the influence of
the drag number, there is an optimum that corresponds
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FIG. 4: Minimum gradient Richardson number as a
function of Hcan and ∆.
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FIG. 5: Along channel velocity profile for the critically
unstable case in section 3.1.

to the lowest critical Reynolds number. For a higher drag,
motions below the canopy are suppressed to such an ex-
tent that it hinders the formation of canopy waves. When
the drag approaches either 0 or takes a very large value,
the problem reduces to a plane half-channel flow (in the
latter case, no flow is possible below the canopy transi-
tion), and the inflection point no longer occurs.

Miles and Howard (1964) showed that in stratified,
inviscid laminar shear flow, the gradient Richardson num-
ber has to be below 1/4 somewhere in the flow before
instabilities can occur. The gradient Richardson number
is defined as

Rig =
(g/T0)∂zθ

(∂zu)2 + (∂zv)2
. (6)

The minimum value of the gradient Richardson num-
ber, which we will denote by Rimin, is used to see
whether the instabilities can be described by Miles’ cri-
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FIG. 6: Along channel temperature profile the critically
unstable case.

terion for inviscid stratified shear flow. It is below 1/4 in
all cases, which suggests that drag and viscosity play a
significant role (figure 2). For very stable situations, it ap-
proaches 1/4 though.

The influence of Hcan and ∆ was investigated for
Ri = 163.5 and Dr = 5 (figures 3 and 4). It appears
that even for a low canopy instabilities occur. The mini-
mum gradient Richardson number is larger when a signif-
icant part of the domain is taken up by the canopy. The
influence of the transition height ∆ depends on the the
canopy height, but is relatively small when Hcan = 0.3
and ∆ varies around 0.06.

The characteristics of the case with Ri = 163.5,
Dr = 5, Hcan = 0.3 and ∆ = 0.06 are discussed in
more detail below. We look at the behavior at the critical
Reynolds number of 74.4. The mean horizontal velocity
and temperature profiles are shown in figures 5 and 6.
The horizontal velocity profile resembles a laminar half-
channel flow (parabolic profile) above the canopy. Just
above canopy height, a strong curvature of the horizontal
velocity profile is found. Below, the wind speed is largely
influenced by the presence of the canopy, although the
wind shear increases again close to the surface. Since
the temperature profile does not have a second deriva-
tive, the mean temperature profile does not evolve over
time as long as the flow is laminar.

From the eigenmodes, physical quantities such as
velocity and temperature perturbations and the kinetic en-
ergy of perturbations

E = 1

2
u′2 + v′2 + w′2

can be calculated (figures 7 and 8). Since the pertur-
bations have a very small amplitude, they are normalized
by their maximum values. The normalized perturbation
kinetic energy plot also shows the direction of the per-
turbation velocity field. The fluctuations have the largest
amplitude in a shallow layer above the canopy, although

a second maximum can also be observed in the lower
canopy. The temperature and horizontal velocity have op-
posite phase below and far above the canopy, in agree-
ment with Lee (1997). It turns out that for the reference
case, instabilities do not occur until the minumim gradient
Richardson number reaches a minimum value of 0.115
(Fig. 9). Lee also finds gradient Richardson numbers be-
low 1/4 in his stability analysis.

Miles’ criterion for stratified shear flow can be inter-
preted in terms of the well-posedness of the hydrody-
namic equations at a critical level. The growing mode
will have a phase speed equal to the mean wind speed
at the critical level (Howard, 1961). The occurrence of a
strong peak in E indicates that the occurrence of instabil-
ities in the reference case may also be determined by the
behavior of the flow at a critical level. Figure 10 shows the
level where u = c, which is also where E peaks. The min-
imal gradient Richardson number is located slightly below
this level. The second derivative of the rescaled velocity
is plotted in figure 11. This shows the occurrence of two
inflection points which roughly correspond to E maxima.
This all points to the importance of a critical level.

3.2 Growth rate of perturbations in the DNS

The case that was discussed in the previous section is
also the basis for the DNS simulations. However, in these
simulations, a higher Reynolds number is used in order
to be able to study intermittency. The results that are pre-
sented below use Re = 316.2.

As a test of the consistency between DNS and sta-
bility analysis, we considered the growth rate of distur-
bances. As an initial condition, a steady state for laminar
flow is determined by integrating the laminar flow over a
large number of time steps in a one dimensional model.
The corresponding temperature and velocity profiles are
dynamically unstable. A stability analysis of these pro-
files gives a prediction of the growth rate. The advantage
of using a fully developed profile, instead of a developing
laminar profile starting from rest, is that the mean flow
does not change during the initial growth of small per-
turbations. The growth rate of perturbations in the DNS
should be constant and correspond almost exactly to the
growth rate predicted by the stability analysis.

The effect of random perturbation on the fully de-
veloped flow was investigated first. The nondimensional
time step used was △t = 7.906 ·10−5tsc, the temperature
perturbations had an amplitude of Apert = 2 · 10−7Tsc

and the predicted growth rate optimal perturbations was
σI,opt = 14.03t−1

sc . Figure 12 shows the development
of domain integrated velocity and temperature variances
and E in a logarithmic plot. It can be seen that after
t = 0.3, the temperature disturbances start growing al-
most linearly. An evaluation of σI between t = 0.76tsc

en t = 0.95tsc gives 13.87t−1
sc , which is close to the re-

sult from the stability analysis. Figures 13 and 14 show
the same case, but now forced with optimal perturbations
from the stability analysis. Linear growth is found from
the beginning. σI between t = 0.76tsc en t = 0.95tsc is
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13.99t−1
sc , which corresponds even better to the stability

analysis.

3.3 DNS of intermittent turbulence

In order to investigate intermittency, we use a simulation
with the same settings, but developing from a rest state.
To save DNS computing time, a one-dimensional model
of the developing laminar flow is coupled to the stability
analysis in order to find an initial condition where pertur-
bations have just started to develop. Velocity and tem-
perature fluctuations corresponding to the most unstable
eigenmode are introduced in the first time step. The be-
havior of the perturbations during the first time-steps is
shown in figure 15. The perturbation starts growing very
slowly. An increase in the growth rate can be observed
(at the beginning the growth rate should be close to zero,
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FIG. 9: Gradient Richardson number profile for the crit-
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the fastest growing mode for the critically unstable case.
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as it has just become unstable).

Figure 16 shows the development of the mean ve-
locity at z = H and z = H/2, the domain averaged
variances u′2, v′2, w′2, and the sum of these variances
2E . The plot of 2E shows overshooting and saturation
behavior. Saturated waves have also been found in the
earlier studies by Dörnbrack et al. (1995) and Hu et al.
(2002). Note that the mean horizontal velocity has not
yet reached an equilibrium value at the end of this run.
The variance of the spanwise velocities remains 0. In this
direction, there is no source of heterogeneity.

However, when a small additional random forcing is
applied to the initial temperature field, three-dimensional
structures have the opportunity to develop, as shown in
figure 17. At t = 9tsc, the initial two-dimensional instabil-
ity has grown to a significant size. At this point, the vari-
ance of the spanwise flow v′2 is still negligible. After an-
other 3tsc, suddenly a large three-dimensional instability
develops. Three-dimensional instabilities apparently start
growing when the two-dimensional wave has already de-
veloped.

Once the turbulence has developed, the mean flow
start to decelerate. Around 20tsc, there is an increase
in the mean velocity above the canopy, followed by an
increase in turbulence. After 35tsc, however, the turbu-
lence completely disappears and the flow starts acceler-
ating again, until another burst of turbulence occurs. This
behavior continues over several cycles. The later bursts
are not preceded by two-dimensional waves.

The velocity and temperature profiles before and af-
ter a number of turbulent episodes are shown in figures
18 and 19. For the 2 later events, the velocity and tem-
perature profiles are almost the same, both before and
after the burst. This suggests that the bursting events
are well-defined, even though the turbulence intensity in
between bursts fluctuates. The temperature profile is
strongly mixed by turbulence.

4. CONCLUSIONS

The aim of the current work was to create a relatively sim-
ple framework to study intermittency induced by a porous
canopy in a fundamental way. The model that was devel-
oped allows for a stability analysis that predicts the tran-
sition from laminar to turbulent flow, and can also be used
for direct numerical simulation.

Instabilities are found for a wide range of parame-
ter settings, and even at relatively low Reynolds numbers
(Re of less than 100). When the perturbations are ap-
plied in the DNS, two-dimensional wave growth can be
studied in detail. The perturbations eventually saturate,
but three-dimensional turbulence results when small ran-
dom temperature disturbances are added. It was shown
that the model can display intermittent behavior at a low
Reynolds number. The turbulence occurs as a burst, dur-
ing which the production of fluctuation kinetic energy E is
large.

During the burst, kinetic energy is extracted from the
mean flow and the shear stress decreases. Because
stratification is enforced, the flow quickly returns to a
weakly turbulent state. After a while, turbulence may even
collapse completely. However, in the absence of strong
turbulence, the mean flow will be accelerated by the pres-
sure gradient. The increasing shear will lead to the gen-
eration of turbulence again, completing the intermittent
cycle.

The occurrence of a collapse of turbulence in the
DNS may depend on the parameter settings of the model
and the Reynolds number. Future work should inves-
tigate if the same mechanism also applies to higher
Reynolds number flow.
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FIG. 12: Growth of perturbations, with a lam-
inar steady state profile and random tempera-
ture perturbations
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FIG. 13: Growth of perturbations, with a lam-
inar steady state profile and optimal perturba-
tions
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FIG. 14: As previous figure, but only the first
few time steps .
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FIG. 15: Growth of perturbations, with a de-
veloping profile and optimal perturbations
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FIG. 17: Mean streamwise velocity at 2 levels and domain integrated 2E , with added initial random temperature
perturbations
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FIG. 18: Velocity profiles before (solid lines)
and after (with markers) a number of bursting
events

.
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FIG. 19: Temperature profiles before (solid
lines) and after (with markers) a number of
bursting events

.


