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1. INTRODUCTION 

 
Technological advances in weather forecasting and 
land surface modeling have led to an increased ability 
to predict soil temperature and moisture. These 
variables are critical building blocks to the 
development of high level agriculture-specific models 
such as pest models and plant development models. 
The output of these domain-specific models would be 
presented to agricultural end users through 
Agricultural Decision Support Systems (DSSs) 
targeted to the specific needs of user groups. 
 
The National Center for Atmospheric Research 
(NCAR) has teamed up with DTN/Telvent, a major US 
agricultural weather provider, to develop a soil 
condition forecast system, run downstream 
agriculture-specific models, and integrate the data 
into a DSS. NCAR’s Dynamic Integrated ForeCast 
system (DICast) was used in conjunction with 
variations of the High Resolution Land Data 
Assimilation System (HRLDAS), a land-surface 
modeling (LSM) system, to produce soil condition 
forecasts. 
 
A major area of interest to this NASA-funded project 
was whether soil temperature and moisture forecasts 
could be improved through the use of remotely 
sensed data from the MODIS satellite to help better 
determine the vegetation coverage. Prior to this, the 
land surface model had used vegetation indices from 
a climatological data set with monthly temporal and 
15km spatial resolution. The MODIS Leaf Area Index 
(LAI) and Fraction of Photosynthetically Active 
Radiation (FPAR) data provide a more current 
vegetation status at higher spatial resolution and 
should improve the LSM initial conditions. 

 
2. PROJECT ORGANIZATION 

 
The project was organized into three main areas of 
research and development. The first was geared 
toward core development of and enhancements to the 
HRLDAS model. This work included exploring and 
improving the thermal transfer within the LSM. It also 
involved the extension of HRLDAS to incorporate the 
MODIS vegetation data. This research was carried 
out using retrospective analyses and observations 
from 2005-2007. The HRLDAS output in these  
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retrospective runs was compared to soil temperature 
and moisture observations from the Soil Climate 
Analysis Network (SCAN), a mesonet operated by the 
National Resources Conservation Service under the 
US Department of Agriculture. 
 
The second effort was to develop an operational 
weather and soil forecast system. This system was 
designed to be modular so that new weather 
forecasts or HRLDAS upgrades could be easily 
integrated. The system ran once per day, at 0900 
UTC, in order to have forecasts available to users 
early in the morning. The raw soil temperature and 
moisture forecast data were also made available to 
DTN/Telvent through web-based graphics. The 
forecast domain was the central and eastern US, and 
is shown, along with sample soil temperature and 
moisture forecasts in figures 1 and 2. This is the main 
area of the DTN/Telvent agricultural user base. It is 
also a region in which dry-land farming is 
predominant. That is, in this region, farmers depend 
on precipitation rather than irrigation. This simplifies 
the soil forecast process since human effects are 
minimized. Unfortunately, there are relatively few soil 
observation sites within this domain. This makes 
verification more difficult. Due to the agricultural focus 
of this project, the tuning and verification efforts 
focused on forecasts at the 5 cm and 10 cm depths 
made during the growing season which we defined as 
the months of March through August. 
 
The third effort was by the agricultural forecast 
advisors at DTN/Telvent. They used the web-based 
graphics when advising customers and also worked 
with users to determine the best way to incorporate 
this data into their DSS, DTN Online. 
 
3. RESULTS 

 
Early in the project, HRLDAS was configured with 4 
subsurface nodes, at 5 cm, 25 cm, 75 cm and 150 
cm. This matched the depths available in the North 
American Model (NAM). As the project progressed, it 
was determined that, with this configuration, the 
distance between near-surface nodes was too great 
to effectively model the heat transfer. This led to the 
addition of two nodes and a restructuring of the node 
depths. The node depths were set to 1 cm, 5 cm, 20 
cm, 50 cm, 100 cm, and 166 cm. The middle four of 
these six nodes matched the SCAN observational 
depths. Besides providing a better verification basis, 
this change also reduced the 5 cm soil temperature 
forecast errors. 
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Figure 1: Sample HRLDAS gridded 5 cm soil temperature forecast. The 4 regions described in the results 
section are roughly obtained by splitting the domain in half in both the vertical and horizontal. The region 
boundaries are indicated.

 
Figure 2: Sample HRLDAS gridded 5 cm soil moisture forecast. 



The parameter czil, a surface heat exchange 
coefficient in HRLDAS, affects the turbulence near the 
surface and heat transfer at the surface. Originally, 
this parameter was constant across the whole 
domain. Research showed that varying czil would 
improve the soil temperature forecasts for one 
vegetation type while worsening them another. It was 
determined that by making czil depend on vegetation 
type some of this variability could be eliminated. 
Again, the results varied regionally. The improvement 
due to the incorporation of this algorithm can be seen 
in figures 3-7. 

The MODIS data, available once every 8 days from 
polar orbiting satellites, was used to initialize the LSM 
vegetation fraction. In regions and seasons where the 
vegetation was near normal, little difference in the soil 
forecasts was expected. However, in areas where 
vegetation was above or below normal levels, the 
influence of using the MODIS data was expected to 
be noticeable. The improvement the MODIS data had 
on the czil algorithm can also be seen in figures 3-7. 
Some of the issues associated with using the MODIS 
data are addressed in the Discussion section below.  

 
 
 

 
Figure 3: Summer forecasts in the NE show iterative improvement in 5 cm soil temperature times series. The 
observations (black) are better matched in successive runs starting from baseline 6-layer HRLDAS (ctl_6_n) 
to CZIL algorithm (tst2), and finally to runs with the MODIS data (tst2+df1+nasa). Despite the successive 
improvements, there is still a bias of more than 1°K. 

 



 
Figure 4: Summer 5 cm soil temperature forecasts for the SE region. Again, an iterative improvement is seen 
after each upgrade. The bias is less than in the NE region. 

 
Figure 5: Summer 5 cm soil temperature forecasts for the NW region. The czil upgrade leads to an extremely 
good match with the observations. The inclusion of the NASA-MODIS data only slightly worsens the 
forecasts. 



 
Figure 6: Spring 5 cm soil temperature forecasts for the SE region. The bias is removed with the czil 
algorithm. The MODIS data provides a slightly better match to the range of the diurnal cycle. 

 
Figure 7: Spring 5 cm soil temperature forecasts for the NE region. Extra time series lines here should be 
ignored. They represent other variations in the use of MODIS data and czil algorithms. The lines for the czil 
upgrade (tst2) and MODIS data inclusion (tst2+df1+nasa) are different colors in this plot. Here, the diurnal 
range is better matched by the control 6-layer run. The czil algorithm and the MODIS data worsen the 
forecasts. The small observed range in the diurnal cycle may be due to snow coverage for part of the period. 



 
 
To subjectively summarize the improvements by 
region and season, the Table 1 attempts to describe 
the improvements (relative to the 6-layer baseline) 
due to the czil algorithm and MODIS data 
incorporation. An estimate of the quality of the 
forecasts in each region and season is also provided. 
The subjective quality is based upon error statistics 
and how well the diurnal cycle was matched. The ++ 
symbol is intended to represent a much more 
significant improvement than a + symbol. 
 
It should be noted that snow cover and frozen ground 
issues affect the NE, NW, and to some extent the SW 
(KS, OK) in spring. Otherwise, the forecasts are 
generally good or better.  
 
To further address the question of the value of the 
MODIS data to HRLDAS soil forecasting, the sites 
were broken out not by region but rather by 
vegetation type. Interestingly, this ended up also 
being a rough regional breakdown. The sites were 
chosen to have similar land use and soil types. The 
first of the three areas was the low vegetation region 
west of the Mississippi River.). These plains sites 
were generally less vegetated than the Middle Region 
(E of the Mississippi River and N of Tennessee). The 
Southern Region (south of the Middle Region) 
contained the most vegetated sites. The 6-layer with 
climatological vegetation was used as the control run, 
and the MODIS data was then added to modify the 
initial state of the vegetation. 
 
As the growing season progressed, as expected, the 
RMSEs grew larger as the insolation increased. The 
average errors aggregated over each regions’ sites 

varied from 1.85°C in April to 2.46°C in June. The 
errors in the Western Region were by far the largest. 
This result has been seen before and is attributed to 
heat transfer issues in HRLDAS in less vegetated 
areas. 
 
Figures 8-10 compare regional forecasts generated 
with and without the MODIS data for April, May, and 
June.  During April, the MODIS data does not improve 
the forecast in any region. In fact, with the MODIS 
data, the forecasts are significantly worsened in the 
less vegetated regions. However, as the growing 
season evolves and more vegetation develops, the 
situation reverses and the addition of the MODIS data 
dramatically improves the forecast in the more 
vegetated regions. In the Western Region where 
there is still not as much vegetation even in June, the 
MODIS data does not improve the forecasts. In fact, 
they are still slightly worsened. However, even in this 
region, there seems to be a clear relationship 
between the amount of vegetation and the 
improvement provided by the MODIS data.   
 
It seems fairly clear that the improvement provided by 
MODIS data for soil temperature forecasting is related 
to the amount (or perhaps to the height) of the 
vegetation present in the forecast area. That is, the 
MODIS data improves the soil forecasts in regions 
that are more heavily vegetated but does not improve 
forecasts in region of relatively sparse vegetation. 
 
The differences using the MODIS data for soil 
moisture forecasting were less significant. The 
differences in errors were always less than 0.5%. 

 
 
 

 Spring Summer 
 Czil NASA Quality Czil NASA Quality 

NE - - Poor ++ ++ Good 
NW ++ = Poor ++ - Excellent 
SW ++ - Fair ++ = Good 
SE + + Excellent + + Good 

 
Table 1: Subjective description of the changes in the 5 cm soil temperature forecast skill due to the HRLDAS 
czil upgrade and the inclusion of NASA MODIS data are shown. 



 
Figure 8: April 5 cm soil temperature forecast errors with and without the MODIS data are shown. A different 
colored line is used for each region. Dashed lines are used for the forecasts made with MODIS data. It can be 
seen that the MODIS data increases the errors significantly for the middle and especially the western sites. 
The errors are largest at night. There is also an interesting smaller peak in the errors near midday. 

 
Figure 9: May 5 cm soil temperature forecast errors with and without the MODIS data are shown. With rapidly 
increasing vegetation in the more forested middle and southern sites, the MODIS data significantly reduce 
the peak errors. The less vegetated western sites still show larger errors with the MODIS data than without. 



 

 
Figure 30: June 5 cm soil temperature forecast errors with and without the MODIS data are shown. The 
improvement with MODIS data in the increasingly vegetated middle and southern sites is further increased 
when compared to May. Now the improvement can be seen across the full diurnal cycle. The western sites 
still have larger errors with the MODIS data than without. However, with increased vegetation, the difference 
in errors is reduced. 

 
 

4. DISCUSSION 
 

While the results were encouraging, it became 
apparent that the forecast skill varied significantly 
between observational sites. This begs the question 
of how well soil forecasting can be done given the 
current parameter sets. For example, there are only 
10 soil types and 24 land use types in the current 
HRLDAS system. Clearly, there is an infinite variety of 
each of these. It is unlikely that the parameterizations 
associated with any of these will exactly match the 
soil chemistry and plants growing there. 
 
Furthermore, the resolution of the data sets used to 
initialize HRLDAS is seemingly unsatisfactory. It was 
recognized that the land use and soil type 
characteristics for each verification site were 
potentially incorrect. They had been taken from the 
HRLDAS (4.5 km) grid cell in which the site was 
located. The grid cells values had been populated 
from a 1-km USGS data set developed in the early 
1990s. However, within each 4.5 km grid cell there 
ended up being a fair amount of variability. After 
extracting the sites’ land use and soil type directly 
from the USGS grid, the land use and occasionally 

the soil type at a verification site often did not match 
the grid center’s land use and soil type.  
 
This led us to believe that if we corrected the soil-type 
and/or land-use at the mischaracterized sites that the 
modeled soil temperatures would improve. Running 
with climatological vegetation data (15km resolution), 
the overall verification showed little improvement in 
soil temperature error. This was somewhat 
disappointing. However, several sites did show 
significant improvement while a handful of sites were 
significantly worsened. We began by investigating the 
sites which performed worst (even when configured 
with “correct” land use and soil type data). One site, 
Rock Springs, PA was investigated in depth. This 
investigation brought up several important issues. 
 
Using the HRLDAS grid cell containing the 
observation site, the Rock Springs site’s land use was 
characterized as Deciduous Broadleaf Forest. The 
SCAN web pages contain a photo of this site. It is 
clearly not in the woods (Figure 11). Instead, it is in an 
open field with dense woods approximately 300m to 
the south. Google Earth was used to verify the lat-
longs and that the photo was reasonable (see Figure 



12). However, after setting the land use at the 
observing site as Dryland Cropland and Pasture, the 
modeled soil temperatures at the site were even 
worse with the correct land use type! We could only 
attribute this to a potential mismatch between the land 
use, and the climatological LAI and FPAR values 
used in this run. The LAI and FPAR values for this 
site came from a 15km climatological data set and 
were consistent with a heavily wooded area. 
Apparently, the model felt that the crops were 
incredibly high and dense. We decided that this 
mismatch would probably be corrected by using the 
MODIS 1-km LAI and FPAR. 
 
The run using the Aqua and Terra MODIS data gave 
slightly better results overall (for all the 
mischaracterized sites combined) than either of the 
previous runs. At Rock Springs however, the results 
fell between the original run and the run with the 
“correct” land use type.  Upon closer inspection, the 
MODIS LAI and FPAR data seemed to be dominated 
by the nearby woods. That is, the LAI/FPAR values 
were similar to the climatological values, and very 
different than the LAI/FPAR values for adjacent non-
forested grid cells (see Figure 12). 
 
The high LAI and FPAR values seemed to extend well 
beyond the forested region. This led us to question 

the calibration of the MODIS data. It should also be 
noted that the Terra and Aqua LAI and FPAR values 
differed somewhat over the same region (although 
this was not the case for our experiment shown in 
Figure 12). Eventually, by “moving” the observation 
site about 1km to the north and 1km west, we were 
able to run HRLDAS with LAI and FPAR values 
consistent with cropland. The error dropped 
significantly and was well below the error obtained 
from any other configuration. This would indicate that 
having the correct land-use type along with the 
correct LAI and FPAR data does improve the model’s 
performance. 
 
Afterwards, we examined other observation sites. 
Several were classified as Cropland/Woodland 
Mosaic. The SCAN web site photos confirmed this. 
Although all the sites were in the cropland, trees could 
be seen from approximately 20m to 100m from the 
measurement stations. This indicates that the 1-km 
MODIS data may not have sufficient resolution to 
accurately describe the vegetation at a specific point, 
especially in areas of rapidly changing land use. 
Higher resolution remotely-sensed data would help 
greatly with this issue. 100m resolution would 
probably be satisfactory. 

 
 

 
Figure 11: The Rock Springs observing site clearly lies in cropland rather than woodland. 



 
 

 
Figure 12: MODIS FPAR values from mid-June 2006 near the Rock Springs, PA soil observation site (red dot). 
The MODIS FPAR values from Aqua and Terra are provided for each 1-km grid cell (green dots at cell center). 
The grid cell in which the observation site lies has FPAR values similar to the more wooded areas to south. 
However, the observation site lies in cropland which should have a FPAR value more like the grid cell to the 
northwest. Is this a registration or resolution issue? 

 
 
While this is a little discouraging, it should be noted 
that many sites’ modeled soil temperatures were 
significantly improved by using the higher resolution 
USGS Land Use and Soil Type data as well as the 
MODIS data. Without any manipulation, i.e. “moving” 
the sites, the overall errors (for all sites) were 
decreased. Ultimately, a definitive answer as to 
whether or not improvements using higher resolution 
data leads to improved modeled soil temperatures will 
have to be based on statistics over a large numbers 
of sites. Although there is much variability between 
sites, the overall errors are decreased using the high 
resolution data despite the aforementioned issues. 
 
 
 
 

5. CONNECTING WITH THE END USER 
 
Towards the end of the project NCAR worked with 
DTN to determine how the soil forecast data could be 
used in a DSS to present meaningful information to 
the end users. It became clear that deterministic soil 
temperature and moisture values alone were not very 
valuable to the end user. Based on feedback, it was 
determined that the trend in soil temperature and 
moisture was most important in making decisions 
such as when to plant and when to harvest.  NCAR 
prototyped some software to come up with forecast, 
observed, and climatological trends. Figures 13 and 
14 are examples of how this trend data could be 
displayed. Note that in these two examples the 
departure from climatology in HRLDAS predictions 
generally agrees with that in observations.  



 
Figure 13: Initial efforts at communicating soil temperature conditions to the end user. The user can see 
normal conditions (climo) compared to the forecasts and observations. Last year’s observations from this 
time are also shown. 

 
Figure 14: Same as figure 13, but showing soil moisture. 

 
 



6. CONCLUSIONS 
 

Land Surface Models, forced by weather forecasts, 
can produce reasonable soil temperature forecasts. 
Surface heat transfer algorithm upgrades do improve 
the soil temperature forecast. However, this is an 
ongoing research effort as there is still room for 
significant improvement in the heat exchange 
calculations. 
 
The use of MODIS vegetation data for LSM 
initialization (instead of climatological LAI) can 
significantly reduce the soil temperature forecast 
errors for sites in which the MODIS values are 
reasonable. The error reductions are highly correlated 
to the amount of vegetation present at any location 
and time. The MODIS data reduces forecast errors 
much more significantly in areas that are heavily 
vegetated but has little impact in drier areas with 
sparse vegetation. 
 
The forecast performance varies from site to site 
depending on how well the land use, soil type, and 
MODIS data in HRLDAS match specific observation 
sites. For many of the sites, the resolution of these 
data sets is too coarse to correctly classify the real 
characteristics and subsequently the forecasts are not 
as good for these sites. 
 
While it is not easily verifiable, we believe that even in 
mixed land use areas the HRLDAS soil forecasts 
provide a good approximation of the average soil 
temperature and moisture over the entire grid cell and 
this data could be used effectively in a real-time 
decision support system. Much of the difficulties in 
verification arise because the observation site may 
not be typical of its surroundings. A much more 
involved project will be required to investigate whether 
this hypothesis bears true. 
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