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1 INTRODUCTION

It is well known in computational fluid dynamics
that grid quality affects the accuracy of numerical
solutions [Lee and Tsuei, 1992, You et al., 2006].
When assessing grid quality, properties such as
aspect ratio, orthogonality of coordinate surfaces,
and cell volume are considered. Mesoscale atmo-
spheric models generally use terrain-following coor-
dinates with large aspect ratios near the surface. As
high resolution numerical simulations are increas-
ingly used to study topographically forced flows, a
high degree of non-orthogonality is introduced, es-
pecially in the vicinity of steep terrain slopes. Nu-
merical errors associated with the use of terrain-
following coordinates can adversely effect the ac-
curacy of the solution in steep terrain. Inaccuracies
from the coordinate transformation are present in
each spatially discretized term of the Navier-Stokes
equations, as well as in the conservation equations
for scalars. In particular, errors in the computa-
tion of horizontal pressure gradients [Janjić, 1977,
1989], diffusion [Zängl, 2002, 2003], and horizon-
tal advection [Schär et al., 2002] terms have been
noted in the presence of sloping coordinate sur-
faces and steep topography.

In this work we study the effects of these spatial
discretization errors on the flow solution for three
canonical cases: scalar advection over a mountain,
an atmosphere at rest over a hill, and forced advec-
tion over a hill. This study is completed using the
Weather Research and Forecasting (WRF) model.
Simulations with terrain-following coordinates are
compared to those using a flat coordinate, where
terrain is represented with the immersed bound-
ary method [Lundquist et al., 2010]. The immersed
boundary method is used as a tool which allows us
to eliminate the terrain-following coordinate trans-
formation, and quantify numerical errors through a
direct comparison of the two solutions. Additionally,
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the effects of related issues such as the steepness
of terrain slope and grid aspect ratio are studied in
an effort to gain an understanding of numerical do-
mains where terrain-following coordinates can suc-
cessfully be used and those domains where the so-
lution would benefit from the use of the immersed
boundary method.

2 NUMERICAL METHOD

2.1 DESCRIPTION OF NUMERICAL ERRORS
IN TERRAIN-FOLLOWING COORDINATES

Terrain-induced mesoscale systems include fea-
tures such as sea and land breezes, mountain-
valley winds, urban circulations, and forced advec-
tion over topographic obstacles [Pielke, 1984]. Ter-
rain is frequently represented in mesoscale models
by mapping the vertical coordinate to the terrain.
The most frequently used mapping function defined
by z̄ or σ,

z̄ = σ =
ztop(z − zht(x, y))
ztop − zht(x, y)

, (1)

was first proposed by Gal-Chen and Somerville
[1975], where the overbar denotes the quantity in
the transformed coordinate, ztop is the top of the do-
main, and zht(x, y) is the terrain height. This func-
tion maps a domain with an irregular lower bound-
ary onto a Cartesian grid, thereby simplifying the
application of lower boundary conditions. Due to
this advantage, this mapping function (or similar
variants based on pressure or potential tempera-
ture and those using a non-dimensional formula-
tion) is utilized in most modern mesoscale models.
The disadvantage of this coordinate transformation
is that it introduces additional terms into the govern-
ing equations. For example, the covariant velocity
vectors which are perpendicular to coordinate sur-
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faces are given by equation 2.ū
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The extra terms are not difficult to handle numeri-
cally, as long as the transformation is well-behaved.
As noted by Gal-Chen and Somerville this transfor-
mation is only well-behaved for terrain with continu-
ous second derivatives, and when the determinant
of the Jacobian ( ztop−zht

ztop
) is close to unity. There-

fore, there is a wide variety of terrain, for which this
transformation should not be used.

Inaccuracies from the coordinate transformation
are present in each spatially discretized term of the
Navier-Stokes equations, and arise from truncation
errors due to the coordinate transformation (includ-
ing both grid stretching and skewness) as well as
the numerical calculation of the metric terms. Schär
et al. [2002] carried out a theoretical analysis of
truncation errors in a generalized transformed co-
ordinate. The analysis considers the transformed
one-dimensional advection equation:

∂ρ

∂t
+ J

∂(ρu)
∂x̄

= 0. (3)

Here J = ∂x̄/∂x is the Jacobian of the transforma-
tion, where the overbar indicates the transformed
coordinate.

After applying a Taylor series expansion, the error
term is derived in computational space. Using the
transformation back to physical space (∆x̄ = J∆x),
the total truncation error for a first order upwind
scheme is given by equation 4.

E =
∆x

2
J

∂

∂x

(
uJ−1 ∂ρ

∂x

)
+ O(∆x2) (4)

Applying the chain rule, the truncation error may be
split into two parts given in equation 5. Efd is at-
tributed to the finite differencing scheme, and Et to
the coordinate transformation.

Efd =
∆x

2
∂

∂x

(
u

∂ρ

∂x

)
+ O(∆x2) (5a)

Et = −∆x

2
u

∂ρ

∂x
J−1 ∂J

∂x
+ O(∆x2) (5b)

It is seen here that the leading term for the error
due to each cause is of the same order of magni-
tude O(∆x). Thus, large Jacobian terms as well as
large gradients in the Jacobian lead to significant
increases in the transformation truncation error. In

the limit of the Jacobian approaching unity, the trun-
cation error reduces to the theoretical form from the
finite differencing scheme. At this point the Jaco-
bian is in an exact form. Numerical estimates of the
Jacobian using finite differencing include additional
truncation errors.

Furthermore, Mahrer [1984] notes that numeri-
cally inconsistent horizontal derivatives arise when
the distance between two vertical grid points (∆z)
is smaller than the elevation difference between two
horizontally adjacent points. This inconsistency oc-
curs even when the metric term is included in the
calculation (computing horizontal gradients along
sloping surfaces without consideration for the met-
ric terms is also commonplace). Additionally, the
common practice of stretching the grid towards the
bottom boundary to achieve fine vertical resolution
near the surface, exacerbates these errors. In the
transformed coordinate, a horizontal derivative is
calculated as:

∂

∂x

∣∣∣∣
z

=
∂

∂x

∣∣∣∣
z̄

+
∂z̄

∂x

∣∣∣∣
z

∂

∂z̄
. (6)

In a forward finite differencing scheme, this deriva-
tive is approximated as:

∂F

∂x

∣∣∣∣
z

=
F (i + 1, j)− F (i, j)

∆x

+
∂z̄

∂x

∣∣∣∣
i,j

F (i + 1, j + 1)− F (i + 1, j)
∆z̄

. (7)

The stencil used in this finite difference scheme
is shown in figure 1. It can clearly be seen that
for a true horizontal derivative in physical space,
it would be more appropriate to use the computa-
tional points located at F (i + 1, j + 3) and F (i +
1, j + 4). Mahrer [1984] demonstrated a reduction
in errors when using this modified stencil.

Geometrically, these errors are more likely to oc-
cur at large aspect ratios, when the horizontal grid
spacing is much larger than the vertical grid spac-
ing, making it more common for the vertical change
in height over the horizontal grid spacing to be
larger than the vertical grid spacing of the computa-
tional cell. This point is illustrated in figure 2, which
depicts the skewness of computational cells as a
function of terrain slope and aspect ratio. The gray
area delineates the parameter space where numer-
ical inconsistencies occur in horizontal derivatives
because the change in grid height over one ∆x is
larger than the vertical grid spacing ∆z. In prac-
tice, mesoscale modelers often stretch the grid to-
wards the surface, using very large grid aspect ra-
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Figure 1: A schematic of the stencil used in a for-
ward finite difference approximation of a horizontal
derivative.

tios. For example, a grid with 1 km horizontal spac-
ing may have the first vertical grid point located at
50 m, leading to an aspect ratio of 20. From experi-
ence most modelers believe that the use of terrain-
following coordinates is limited to approximately 30
degree slopes, however, at an aspect ratio of 20 the
guidelines of Mahrer are violated with just a 2.9 de-
gree terrain slope. This plot shows that decreasing
the aspect ratio or horizontal grid spacing (∆x) can
reduce these errors. It is clear that common prac-
tice is not in line with the current understanding of
numerical errors, thus warranting further study.

2.2 ALTERNATIVE GRIDDING TECHNIQUES

Several methods have been proposed to reduce the
truncation error arising from terrain-following coor-
dinates. Schär et al. [2002] proposed a modified
sigma coordinate in terms of height in which grid
distortion due to small scale terrain features decays
with height more rapidly than distortion caused by
large scale features. The modified coordinate flat-
tens quickly, reducing grid skewness with height,
and improves the accuracy of the solution. Zängl
[2003] extended this method to pressure based co-
ordinates. Klemp et al. [2003] investigated the er-
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Figure 2: The magnitude of errors arising from the
use of terrain-following coordinates is a function of
terrain slope and aspect ratio. Example computa-
tional cells are shown at a variety of terrain slopes
and aspect ratios. The shaded region denotes the
parameter space where the use of terrain-following
coordinates is questionable because the change in
height over two horizontally adjacent points is larger
than the vertical grid spacing ∆z.

rors that arise when numerical treatment of the met-
ric terms is inconsistent with the discretization of
other terms in the governing equations. Distortion
seen in topographically induced gravity waves was
reduced with consistent numerical treatment.

Several alternatives to terrain-following coordi-
nates exist. One method is fitting the topogra-
phy to Cartesian coordinates, thereby creating a
zeroth order stepwise representation of the ter-
rain. Additionally, structured or unstructured body-
fitted coordinates are often employed for meshing
in complex geometries. Another solution is the
use of structured or Cartesian grids which do not
align or conform with the geometries to be repre-
sented. With non-conforming grids the geometry
or boundary passes through the computational do-
main, and boundary conditions are assigned within
the domain, rather than on domain edges. Adcroft
et al. [1997] used a shaved cell approach to repre-
sent topography on a Cartesian grid. This method
eliminates grid distortion, but introduces complica-
tions in the numerical solution at the ground be-
cause the computational cells must be modified
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(shaved) where they intersect the topography. The
immersed boundary method [Iaccarino and Verz-
icco, 2003, Mittal and Iaccarino, 2005] is another
non-conforming grid option. In this method an arti-
ficial force field is imposed at computational nodes
near the boundary to represent the effects of the
boundary. Interpolation of the force field is used
to enforce the boundary conditions directly on the
boundary (which does not align with computational
nodes), rather than modifying the computational cell
as in shaved cell methods. The immersed boundary
method has been implemented in WRF [Lundquist
et al., 2010], and is used in this study to examine
the role that grid quality plays in high-resolution at-
mospheric modeling over complex terrain.

2.3 METRIC TERMS IN THE GOVERNING
EQUATIONS

The mesoscale model WRF solves the non-
hydrostatic compressible Euler equations which
have been transformed into a pressure-based
terrain-following coordinate. Two coordinate trans-
formations are required for the vertical coordinate.
The first transforms the equations into the hydro-
static pressure coordinate, and the second trans-
forms the equations into the terrain-following coor-
dinate. An additional velocity is introduced in these
transformations, and is defined as the contravari-
ant velocity of the vertical coordinate η̇. Therefore,
WRF solves the transformed Navier-Stokes equa-
tions plus an additional equation representing η̇.
The coordinate velocity is relevant here because
the definition contains terms from the Jacobian ma-
trix for the coordinate transformation. The equation
defining η̇ is rearranged so that it appears in WRF
as a prognostic equation for the geopotential φ. The
transformed equations are given by:

∂tµ +∇ · (µ~V ) + ∂η(µη̇) = 0 (8a)

∂t(µ~V ) +∇ · (µ~V ; ~V ) + ∂η(µη̇~V )

−∇(p∂ηφ) + ∂η(p∇φ) = ~F
(8b)

∂t(µw) +∇ · (µ~V w) + ∂η(µη̇w)
−g (∂ηp− µ) = F

(8c)

∂tφ + ~V · ∇φ + η̇∂ηφ− gw = 0. (8d)

In the above equations ~V only includes horizontal
velocities, and ∇ operates on coordinate surfaces
in the horizontal dimension. Geopotential is defined
as φ = gz, so that ∇φ and ∂ηφ are surrogates for
the Jacobian terms ∇z and ∂ηz.

Terms created by the change of coordinates may

be evaluated analytically if the terrain function is
differentiable and the Jacobian matrix is invertible.
Instead it is often more practical to compute the
metric terms numerically, as is the case in WRF.
The Jacobian maps the physical topography onto
a rectangular domain, and in WRF the terms are
also affected by movement of the vertical coordi-
nate during the time integration. Therefore, the Ja-
cobian terms appearing in WRF must be evaluated
numerically at each time step (making an analyti-
cal evaluation impractical). The terms are evaluated
with an even-order finite difference scheme that is
greater than or equal to the order of the advec-
tion scheme. Advection schemes range from 2nd

to 6th order, therefore if a 3rd or 4th order advection
scheme is used, the Jacobian terms are evaluated
with a 4th order scheme.

When the immersed boundary method is used,
the coordinates are still changed into pressure co-
ordinates, but the transformation to terrain-following
coordinates is eliminated. Horizontal gradients of
the coordinate are substantially reduced with IBM,
but the magnitude of the gradients may not be ex-
actly zero due to time variability of the grid arising
from the transformation to pressure coordinates.

3 ANALYSIS OF NUMERICAL ERRORS

First, two cases with analytical solutions are cho-
sen to quantify numerical errors and demonstrate
the increased accuracy of the simulations using the
immersed boundary method over terrain-following
coordinates. The first is an idealized advection test
similar to those presented by Schär et al. [2002]
and Zängl [2003], demonstrating improved horizon-
tal advection far above steep topography. The sec-
ond is an atmosphere at rest over an isolated hill,
following Zängl [2003] and Zängl et al. [2004], quan-
tifying errors primarily in the calculation of horizontal
gradients in the diffusion terms. Forced flow over a
topographic obstacle (a hill) is included as a third
case. This case is used to assess the effects of ter-
rain slope, grid aspect ratio, and turbulent viscosity
on solutions using terrain-following coordinates.

3.1 IDEALIZED ADVECTION OF A SCALAR

In the scalar transport test case of Schär et al.
[2002], highly variable topography (with a maximum
slope of 49 degrees) resides in a quiescent air
mass, with a uniform flow aloft, as shown in figure
3. A shear layer in the velocity sounding persists
without mixing due to the absence of viscosity. The
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Figure 3: Set-up of the idealized advection test from Schär et al. [2002]. Topography is submerged within a
stagnant air mass, with uniform flow above. Temperature is initialize as that of a standard atmosphere. The
analytic solution is shown for advection of a scalar cloud at three different times.

shear layer isolates the effects of the terrain from
the flow aloft, so that when a scalar anomaly is intro-
duced it advects over the terrain without distortion
or diffusion. The analytical solution for the advec-
tion of a scalar cloud is presented in figure 3 at three
different times. In the simulations presented here,
potential temperature is initialized as that of a stan-
dard atmosphere which specifies the stable temper-
ature profile shown in figure 3. A standard atmo-
sphere was also used in the simulations of Zängl
[2003]=, although the analytical solution is indepen-
dent of the background temperature profile. Simu-
lations of this case with a neutral atmosphere can
be found in Lundquist et al. [2008]. When terrain-
following coordinates are used, the horizontal grid
lines retain the signature of the topographic fea-
tures. Discretization of the terrain-following coordi-
nates leads to an additional truncation error which is
a function of the Jacobian. These truncation errors
cause distortion of the scalar as it advects through
the domain as illustrated below.

3.1.1 Model set-up and initialization

In this test, the topography is specified as the prod-
uct of two oscillatory functions. The first function
has a large-scale wavelength of 50 km, and the sec-
ond perturbation function has a wavelength of 8km.
The equation for the topography is given as:

hx(x) =

{
ho cos2(πx

2a ) cos2(πx
λ ) for |x| ≤ a

0 for |x| > a
(9)

where ho = 3 km, a = 25 km, and λ = 8 km.

Velocity, potential temperature, and water vapor
mixing ratio are specified with a vertical sounding.

Velocity is specified by:

u(z) =


uo for z > z2

uo sin2(π
2

z−z1
z2−z1

) for z1 ≤ z ≤ z2

0 for z < z1

(10)

where uo = 10 m s-1, z1 = 4 km, and z2 = 5 km. The
atmosphere is stable, with a potential temperature
of 288 K at sea level, a tropospheric vertical tem-
perature gradient of -6.5 K km-1, and an isothermal
atmosphere above the tropopause at a height of 11
km. A dry atmosphere is considered.

The total domain size is (X, Y, Z) = (300 km, 2
km, 25 km) for the simulation with terrain-following
coordinates. When the immersed boundary method
is used, the domain is extended 1 km in the vertical
dimension to (X, Y, Z) = (300 km, 2 km, 26 km).
The vertical domain ranges from -1 km to 25 km, al-
lowing for computational nodes below the zero ter-
rain height. These extra nodes are used as forc-
ing points in the immersed boundary method. The
number of grid points in the terrain-following coor-
dinate case is (nx, ny, nz) = (301,3,51), and with
the immersed boundary method it is (nx, ny, nz) =
(301,3,53). Horizontal resolution in the base case
is ∆X = ∆Y = 1 km, and vertical resolution is ∆Z
= 0.5 km. The vertical coordinate is stretched in the
pressure-based η coordinate, to maintain uniform
spacing in physical space. The time step is ∆t = 20
s. Schär et al. [2002] use a 25 s time step; how-
ever, a smaller time step of 20 s is needed in WRF
to achieve numerical stability.

The scalar cloud is defined by equation 11, where
the maximum amplitude is ϕo = 1, the horizontal half
width is Ax = 25 km, and the vertical half width is Az
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= 3 km.

r =

[(
x− xo

Ax

)2

+
(

z − zo

Az

)2
]1/2

(11a)

ϕ(x, z) =

{
ϕo cos2(πr

2 ) for r ≤ 1
0 for r > 1

(11b)

The scalar is initialized at the location (Xo, Zo) =
(-50 km, 9 km). It is centered in the domain at t
= 5000 s, and the center is located at (Xo, Zo) =
(50 km, 9 km) when the time integration ends at t =
10000 s.

Schär et al. solved the advection-diffusion equa-
tion, but specified the underlying velocities. Zängl
[2003] examined the case when the momentum
equations are solved in addition to the advection-
diffusion equation using the MM5 mesoscale
model. In our simulations, the momentum equa-
tions are solved, along with advection-diffusion of
potential temperature and the passive scalar cloud.
Comparisons with the analytical solution are made
with numerical simulations using standard terrain-
following coordinates and those using IBM. De-
fault WRF options are used, and include a 3rd or-
der Runge Kutta time stepping scheme, 5th order
horizontal advection, and 3rd order vertical advec-
tion. The odd-order advection schemes are upwind-
biased and diffusive. Default constants are used for
filtering in time, and include a divergence damping
coefficient γd = 0.1, external mode damping coeffi-
cient γe = 0.01, and acoustic time step off-centering
of β = 0.1.

Large truncation errors are present in the na-
tive coordinate, and it is demonstrated that the im-
mersed boundary method can be used within WRF
to alleviate these errors. Truncation errors can be
attributed to either the finite differencing scheme
for advection or the coordinate transformation. By
comparing the solutions on the terrain-following and
immersed boundary grids, the magnitude of error
attributable to each cause is assessed.

3.1.2 Results

Figure 4 shows contours of u and w velocity at t
= 10000 s, with results using terrain-following co-
ordinates on top, and those using IBM below. In
the analytical solution there is no interaction with
the topography, and the velocity field is specified by
equation 10 at all times. When terrain-following co-
ordinates are used it is clear that the distortion of
the grid makes it impossible to isolate the flow aloft
from terrain effects. Waves, induced by errors in the

coordinate transformation, form above the mountain
range. Horizontal velocity should range from 0 to
10 m s-1, and vertical velocity should remain zero.
However, horizontal velocities of -0.53 to 11.72 m
s-1 and vertical velocities of -0.59 to 0.65 m s-1 are
present. Errors in the velocity field for the WRF
case are much larger than when IBM is used, where
the error is negligible. At the end of the IBM simu-
lation, horizontal velocity ranges between -2.27e-4
and 10.0003 m s-1, and vertical velocity between -
1.63e-4 and 1.37e-4 m s-1.

Errors for this simulation (using terrain-following
coordinates and a stable atmosphere) are larger
than seen by Zängl [2003] using the native MM5
terrain-following coordinate. While Schär et al. pre-
scribed the velocity field (and therefore we can not
compare our velocity results to theirs), Zängl al-
lowed the velocity to evolve. Zängl reported max-
imum vertical velocities of 0.19 m s-1 using the na-
tive MM5 coordinate. One possible reason why his
results are much better than the WRF results us-
ing the native coordinate may be due to the model
set-up. The topography used in the Zängl simu-
lation was shorter and wider than in the original
Schär et al. set-up, leading to less distortion of the
grid, and the shear velocity layer spanned a larger
distance, allowing additional resolution. Zängl re-
ported vertical velocities of 0.02 m s-1 using the al-
ternate gridding approach of a modified SLEVE co-
ordinate that flattens quickly with height, which is
more error than seen in our simulations when our
alternative gridding approach using the immersed
boundary method is used.

Snapshots of the scalar cloud are included in fig-
ure 5, along with the associated errors. Significant
distortion of the scalar anomaly occurs as it advects
over the terrain features in the simulation with sigma
coordinates. At the last time the shape of the cloud
is not only distorted, but the center of the cloud has
advected 0.5 km less than in the analytical solution.
Error is calculated as the difference between the nu-
merical and analytical solution, and is shown with
contour intervals of 0.01. At the last time shown,
error for the WRF solution ranges from -0.183 to
0.191, while the scalar concentration ranges from
-0.183 to 0.827. In the simulation using the im-
mersed boundary method, distortion of the cloud is
eliminated. No contours appear in the IBM-WRF er-
ror plot, because the error is less than the threshold
of the first contour (0.01).

Errors in the IBM-WRF simulation are included
in figure 6 with appropriate contour levels (inter-
vals are at 1e-4). In IBM-WRF the deviation from
the analytical solution ranges from -7e-4 to 7e-4,
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Figure 4: Contours of the u and w components of velocity in m s-1 for terrain-following coordinates (top) and
the immersed boundary method (bottom) at t = 10000 s. In the analytical solution, the velocity should equal
the initial sounding throughout the duration of the simulation. Axes indicate domain size in km, and are not
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−60 −40 −20 0 20 40 60
0

5

10

15

W
R

F

Scalar Concentration

0.1

0.8
0.1

0.8

0.1

−60 −40 −20 0 20 40 60
0

5

10

15
Error

−0.05

0.05

0.05

0.1
−0.1−0.05

0.05

0.05

0.1

0.1

−60 −40 −20 0 20 40 60
0

5

10

15

IB
M

−
W

R
F

0.1
0.8 0.1

0.8

0.1
0.8

−60 −40 −20 0 20 40 60
0

5

10

15

Figure 5: On the left, the scalar concentration is shown at t = 0, 5000, and 10000 s. Scalar units are non-
dimensional with a range of 0 to 1. Contour intervals are in 0.1 increments. Error is shown on the right, and
is calculated as the difference between the numerical and analytical solutions. Contour intervals are 0.01.
Error for the IBM-WRF simulation is less than the first contour level (see figure 6 for IBM-WRF error). The
zero contour is suppressed. Axes indicate domain size in km, and are not to scale.

7



Table 1: Summary of errors for the scalar ϕ at t = 10000 s for the WRF simulations with the default advection
scheme and those presented in Schär et al. [2002] and Zängl [2003] (at t = 4 hours). Analytical values of
ϕmin and ϕmax are 0 and 1. ∆ϕ is the difference between the numerical and analytical solutions.
Coordinate Order of ϕ ∆ϕ

Advection Scheme min max min max

WRF Sigma h:5th, v:3rd -0.183 0.827 -0.183 0.191
Schär et al. Sigma 1st 0.000 0.284 -0.700 0.213

2nd -0.168 0.953 -0.174 0.162
4th -0.058 1.001 -0.057 0.052

Zängl Sigma 2nd n/a n/a -0.12 0.10

IBM-WRF h:5th, v:3rd -6e-12 0.988 -7e-4 7e-4
Schär et al. No Topography 1st 0.000 0.762 -0.220 0.141

2nd -0.023 0.985 -0.023 0.021
4th -0.002 0.984 -0.002 0.002

Zängl No Topography 2nd n/a n/a -0.02 0.02
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Figure 6: Error is shown for the immersed bound-
ary method case at t = 0, 5000, and 10000 s. Con-
tour intervals are 1e-4. The zero contour is sup-
pressed. Axes indicate domain size in km, and are
not to scale.

with scalar values ranging from -6e-12 to 0.988.
These errors are identical to those which appear if
no topography is present, and can be attributed to
the finite differencing scheme. In Lundquist et al.
[2008], IBM-WRF simulations were produced us-
ing 3rd through 6th order advection schemes, and it
was shown that error decreased as the order of the
finite difference increased, while this was not the
case when terrain-following coordinates were used
and large errors were present despite the order of
the spatial discretization. The results of these sim-
ulations indicate that the truncation error is domi-
nated by the term arising from the transformation
to terrain-following coordinates, and errors from the
pressure coordinate transformation and the finite
differencing scheme are negligible.

Again, errors in the scalar field for the WRF sim-
ulation are larger than in Zängl [2003], where er-

rors in scalar concentration ranged from -0.12 to
0.10 with a stable atmosphere. A comparison of the
WRF and IBM-WRF results and those presented in
Schär et al. [2002] and Zängl [2003] is included in
table 1. Schär et al. published results for simula-
tions with 1st, 2nd, and 4th order advection schemes
(among others which are not included here). For
reference, both papers also included a set of sim-
ulations with no topography. Error in the reference
simulations is exclusively caused by the finite dif-
ferencing schemes. The simulations without topog-
raphy could be viewed as comparable to the IBM-
WRF simulations because the coordinate surfaces
of the grid are flat in both cases. As expected,
higher order advection schemes decrease error for
both sigma coordinates and the reference cases of
Schär et al.. The IBM-WRF simulation (with topog-
raphy) performs as well or better than the 4th order
reference case with no topography. This is a logi-
cal result, as the immersed boundary method alle-
viates the need for a coordinate transformation and
the simulations use a similar order of accuracy in
the advection schemes.

Schär et al. cite several causes of error in
the idealized advection tests, first reasoning that,
“Schemes with implicit diffusion suffer particularly
large coordinate transformation errors. Diffusion
spreads out the solution in computational space,
rapidly broadens the initial anomaly, and thereby
makes the scheme more susceptible to coordinate
transformations.” In a grid refinement study, Schär
et al. found that the solution was extremely sensi-
tive to horizontal resolution, and large gains in ac-
curacy could be achieved through increased hori-
zontal resolution. The solution was shown to be
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Figure 7: The mountain terrain, along with the grid
for terrain-following coordinates is shown. Every
other vertical coordinate surface is shown for clarity.
This hill has a maximum slope of approximately 10
degrees. Potential temperature is initialized with a
sounding (shown on the right) which specifies that
of a standard atmosphere.

insensitive to vertical resolution. This may be be-
cause increasing the horizontal resolution reduced
the grid aspect ratio, and therefore reduced numeri-
cal inconsistencies in the finite difference schemes,
as noted by Mahrer [1984], and illustrated in figures
1 and 2. Additionally, as shown in table 1, Schär
et al. found that increasing the order of the advec-
tion scheme had a beneficial impact on the quality
of the solution. Accuracy was largely gained from
an increase in the order of the horizontal scheme,
whereas the vertical scheme had little effect.

3.2 ATMOSPHERE AT REST

The second case used to evaluate errors due to
terrain-following coordinates is an atmosphere at
rest over an isolated mountain [Zängl, 2003, Zängl
et al., 2004]. In this case, a dry, stable, and quies-
cent atmosphere resides over a three-dimensional
hill. The set-up is shown in figure 7, which includes
the terrain-following grid at the peak of the hill in the
center of the domain and the vertical profile of po-
tential temperature. In the absence of forcing (at
the surface or otherwise), the atmosphere should
remain at rest, however, flow can be induced by nu-
merical errors. While only a dry atmosphere is con-
sidered here, Zängl et al. [2004] demonstrated that
when moist physics are included these numerical
errors can induce substantial amounts of spurious
precipitation over steep mountains.

3.2.1 Model set-up and initialization

The mountain height ht is specified as a three di-
mensional hill, given by:

ht(x, y) =
hp

1 + (x/a)2 + (y/a)2
, (12)

with a peak height hp of 1500 m and a half-width
a of 5 km. In contrast to the steep and highly vari-
able terrain used in the previous case, the terrain
in this case is smooth with shallow slopes, and a
maximum slope of approximately 10 degrees. At
initialization, the atmosphere is specified as quies-
cent, dry, and with the potential temperature profile
of a standard atmosphere, as previously described
in section 3.1. Pressure is initialized to be in hy-
drostatic balance with the temperature field. Atmo-
spheric physics, other than parameterized turbulent
mixing, are not used.

The domain has (nx, ny, nz) = (101,101,50)
grid points with terrain-following coordinates, and
(nx, ny, nz) = (101,101,55) grid points when the im-
mersed boundary method is used. Both grids have
a horizontal grid spacing of ∆x = ∆y = 1 km. A
rigid lid is specified at the domain top of 16 km.
Spacing in the vertical grid is constant in the pres-
sure coordinate η, but stretched in physical space.
At initialization, the minimum vertical grid spacing
is 147.4 m with a maximum of 1048.5 m for the
terrain-following grid. For the immersed boundary
grid, the minimum and maximum vertical grid spac-
ing is 143.8 m and 1017.8 m. A time step of ∆t
= 6 s is used. Periodic boundary conditions are
specified at the lateral domain edges. Second or-
der explicit diffusion is used. Historically, horizon-
tal gradients for the diffusive terms were often cal-
culated along sloping coordinate surfaces, and the
metric terms were neglected. Several researchers
[Janjić, 1977, 1989, Schär et al., 2002, Zängl, 2002,
2003] demonstrated numerical errors related to the
simplification of calculating gradients along sloping
surfaces. Therefore, WRF also includes the option
to include the metric terms of the coordinate trans-
formation in the calculation of the diffusive terms.
This improves results, but as pointed out in Mahrer
[1984], when the change in grid height over one ∆x
exceeds the vertical grid spacing ∆z, inclusion of
the metric terms still will not yield a truly horizontal
calculation of the gradient. Both options, diffusion
along coordinate surfaces as well as including the
metric terms, are considered in this section. Addi-
tionally, simulations using the immersed boundary
method are presented. In all cases the horizontal
diffusion coefficient is set to 1000 m2 s-1, while ver-
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tical diffusion is not specified. While the coefficient
used for horizontal diffusion is quite large, it is com-
parable to the coefficients used in Zängl [2003] and
Zängl et al. [2004], and allows direct comparisons
with the MM5 results presented in those works.

3.2.2 Results

The solution is integrated for a time period of 24
hours. Contours of potential temperature and veloc-
ity magnitude are shown at the end of the simulation
in figure 8. Isentropes should remain completely
horizontal and undisturbed during the simulation.
While the contour lines appear relatively flat, there
is moderate distortion of the vertical potential tem-
perature gradient, especially very near the surface
in the simulation with diffusion along coordinate sur-
faces, and near the height of the tropopause in both
simulations with terrain-following coordinates. At
the tropopause, there is a discontinuity in the ver-
tical temperature gradient. Numerical errors are in-
troduced in this region as the grid height varies in
the horizontal due to sloping terrain-following coor-
dinates, and finite difference calculations of the hor-
izontal gradient are inconsistent. Lesser errors are
seen outside of the tropopause because the tem-
perature profile is linear in these regions. The con-
stant vertical gradient reduces errors in the calcu-
lation of horizontal gradients in sloping terrain (by
eliminating errors in the calculation of the vertical
gradient). Errors in the temperature and pressure
fields induce flow. At the end of the simulation the
maximum velocity magnitude along the center line
is 1.74, 0.28, and 3.8e-5 m s-1 for simulations with
diffusion along coordinate surfaces, horizontal dif-
fusion, and IBM respectively. Contours of velocity
magnitude are shown in figure 8

Zängl [2003] found larger vertical velocities ad-
jacent to the center line of the domain, noting that
for MM5 simulations with 4th order diffusion along
coordinate surfaces vertical velocities of 1.5 m s-1

are present along the center line and increase to
3 m s-1 adjacent to the center line. We also found
this to be the case in our simulations with maximum
velocity magnitudes of 2.192, 0.318, and 5.5e-5 m
s-1 present for the simulations with diffusion along
coordinate surfaces, horizontal diffusion, and IBM
when the entire domain is considered. Zängl notes
that when horizontal diffusion is used, spurious air
motions are limited to the tropopause (where there
is a discontinuity in the vertical potential tempera-
ture gradient), while air motion extends throughout
the domain when diffusion is calculated along coor-
dinate surfaces. This is also true in our simulations,

Table 2: Maximum value of the absolute value of
individual velocity components [m s-1] for the WRF
simulations in the top rows of the table with compar-
isons to previous works in the bottom rows.[Zängl,
2003, Zängl et al., 2004] .

u v w
WRF coordinate surf. 1.67 2.18 0.67

WRF horizontal 0.32 0.32 0.01
IBM-WRF 7e-5 7e-5 8e-5

MM5 coordinate surf. n/a n/a 0.44
KAMM2 horizontal n/a n/a 0.40

as seen in figure 8.
Zängl reported only vertical velocities, however,

we found significant horizontal velocities in our sim-
ulations. The maximum norm of each velocity com-
ponent is reported in table 2. The horizontal ve-
locity components are much larger than the vertical
velocities for the WRF cases with terrain-following
coordinates. Velocities in all three directions are
nearly eliminated by using the immersed bound-
ary method. Zängl [2003] produced MM5 simu-
lations with second order diffusion, in addition to
those with fourth order diffusion. In the intercom-
parison study [Zängl et al., 2004] the model KAMM2
is used with second order diffusion to simulate this
test case. Results for these simulations with second
order diffusion can be directly compared to our re-
sults (which also use second order diffusion), and
are included in table 2. Zängl notes that the er-
rors for the simulations with second order diffusion
are much smaller than than seen in simulations with
fourth order diffusion. His MM5 simulation with sec-
ond order diffusion along coordinate surfaces pro-
duced a maximum vertical velocity of 0.44 m s-1,
while our WRF simulation with diffusion along coor-
dinate surfaces has a maximum vertical velocity of
0.67 m s-1. The KAMM2 simulations with horizon-
tal diffusion operators produced a maximum vertical
velocity of 0.40 m s-1, while WRF with horizontal dif-
fusion produced vertical velocities of just 0.01 m s-1.

3.3 FORCED ADVECTION OVER TOPOGRA-
PHY

3.3.1 Model set-up and initialization

The case of advection over a topographic hill fea-
ture driven by a geostrophic pressure gradient is
used to examine the effects of terrain slope, grid
aspect ratio, and viscosity by completing a series of

10
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Figure 8: Contours of potential temperature [K] (right) and velocity magnitude [m s-1] at 24 hours for the
atmosphere at rest case. The top panels show simulation with simplified diffusion along coordinate sur-
faces, the middle panels include an evaluation of the metric terms of the coordinate transformation, and the
simulation using the immersed boundary method is shown on the bottom. Contour intervals for potential
temperature are 4 K and for velocity are 0.05 m s-1.
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simulations and varying these parameters. The ter-
rain height of the three-dimensional hill is defined,
as in the atmosphere at rest case, by equation 12
in the previous section, using three different peak
mountain heights hp of 218, 451, and 716 m and
a constant mountain half-width a of 800 m to vary
the maximum terrain slope. This geometry leads to
a maximum slope of 10, 20, and 30 degrees. The
flow is initialized with a neutral sounding of 288 K,
so that the perturbation temperature is -12 K off of
the base state of 300 K. Additionally, the sounding
specifies a constant velocity of 10 m s-1 for u, and
0 m s-1 for v. The flow is driven by a pressure gra-
dient that would balance a geostrophic wind of 10
m s-1 in the x direction. The Coriolis parameter
f is set to a constant value of 1 x 10-4 s-1. The
number of grid points in the horizontal direction is
(nx, ny) = (60,60), with a constant 100 m grid spac-
ing. The top of the domain is located at a height
of 4500 m, and in the vertical dimension the grid
points are equally spaced in physical space, so that
the grid spacing is either ∆z = 50 m or ∆z = 100 m
(leading to an aspect ratio ∆x/∆z of 2 and 1). Addi-
tional points are used in the vertical direction when
the immersed boundary method is used instead of
terrain-following coordinates to account for the fact
that nodes are needed underneath the terrain to en-
force the boundary condition at the immersed sur-
face. Therefore, the domain begins at z = -200 m in
the IBM cases (rather than at z = 0 m in the terrain-
following case), and four additional grid points are
used in the vertical direction when ∆z = 50 m, or
two points when ∆z = 100 m. A constant eddy vis-
cosity of 20 or 30 m2 s-1 is used.

Periodic boundary conditions are used at the lat-
eral boundaries. A no-slip boundary condition is set
on velocity at the terrain surface, along with a zero
flux condition on temperature. At the top of the do-
main, the native WRF boundary condition is used
(isobaric and a material surface), with a Rayleigh
damping layer that acts only on vertical velocity at
the top 500 m of the domain. The flow is inte-
grated for 144 hours, allowing the inertial oscilla-
tions present in the solution to damp out so that
the final solution can be considered steady. Results
presented in the remainder of this section are in-
stantaneous at a time of 144 hours.

3.3.2 Results

Profiles of each velocity component are shown in
figures 9, 10, and 11 for several locations along
the x dimension. Profiles for the 10 degree slope
are shown in figure 9, the 20 degree slope in fig-

ure 10, and the 30 degree slope in 11. The left
column of subfigures is along the center line of the
domain, where y ≈ 3000 m, while the right column
shows a slice at y ≈ 4500 m. The two black dashed
lines show the WRF solution at the two different as-
pect ratios with ∆z = 50 m or ∆z = 100 m, while
the red and blue lines show the IBM-WRF solutions
at the same aspect ratio. It is interesting to note
that the WRF solution appears to change with the
two aspect ratios, while the IBM-WRF solution ap-
pears insensitive to aspect ratio. Additionally, both
IBM-WRF solutions show fewer differences with the
WRF solution with ∆z = 50 m, regardless of the ver-
tical grid spacing. More testing is needed to exam-
ine how aspect ratio and grid resolution effect the
solution independently on the WRF terrain-following
and IBM-WRF grids.

It can be seen that as the slope of the hill be-
comes steeper, the velocity profiles for the WRF
and IBM-WRF solutions show more differences, es-
pecially in the lee of the hill. These differences are
quantified in tables 3 and 4 for the two different as-
pect ratios. To directly compare the WRF and IBM-
WRF solutions, the two solutions are interpolated
onto a common time invariant terrain-following grid.
This new grid uses the same horizontal spacing as
the computational grid, however, the vertical grid
spacing is independent of the grid for the solution.
The IBM solution is subtracted from the WRF solu-
tion for each variable. The domain average of the
difference, as well as the maximum difference is in-
cluded in each table. For comparison, the domain
averaged magnitude of each velocity component is
also included in the table for the WRF and IBM-
WRF solutions. It can be seen that the differences
between the WRF and IBM-WRF solutions increase
with increasing slope, for all velocity components
in both the domain averaged and max norm differ-
ences. This trend holds for both aspect ratios. With
a 10 degree slope and an aspect ratio of 2, the max-
imum difference between the IBM-WRF and WRF
solutions for u velocity is 0.1455 m s-1, which is just
1.5% of the domain averaged magnitude of 9.3042
m s-1 for u in the IBM-WRF domain. With a 30 de-
gree slope, the difference increases to 1.9825 m s-1,
which is a 21.7% difference.

An additional result is that the differences be-
tween the IBM-WRF and WRF solutions are much
larger for the grid with an aspect ratio of 1 than
2. Again for the u velocity component, with a 10
degree slope the maximum difference between the
two solutions is 1.0395 m s-1 or 11.2%, while for a
30 degree slope the maximum difference is 3.1108
m s-1 or 34.0%. Increased error with a grid aspect
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Figure 9: Profiles of u, v, and w velocity are shown for two horizontal locations located along a slice in the
y dimension for a hill with a 10 degree slope. Profiles are located at y ≈ 3000 m on the left and y ≈ 4500 m
on the right. Two different aspect ratios are used, resulting in ∆z = 50 m or ∆z = 100 m.
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Figure 10: Profiles of u, v, and w velocity are shown for two horizontal locations located along a slice in the
y dimension for a hill with a 20 degree slope. Profiles are located at y ≈ 3000 m on the left and y ≈ 4500 m
on the right. Two different aspect ratios are used, resulting in ∆z = 50 m or ∆z = 100 m.
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Figure 11: Profiles of u, v, and w velocity are shown for two horizontal locations located along a slice in the
y dimension for a hill with a 30 degree slope. Profiles are located at y ≈ 3000 m on the left and y ≈ 4500 m
on the right. Two different aspect ratios are used, resulting in ∆z = 50 m or ∆z = 100 m.
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ratio of 1 is a somewhat unexpected result, as seen
in figure 2, it is expected that a grid with an as-
pect ratio of 1 could handle steeper slopes than a
grid with an aspect ratio of 2. It is likely that res-
olution or grid spacing is also an important quan-
tity to consider here, and that the larger differences
between the WRF and IBM-WRF solutions could
be attributed to under-resolving velocity gradients in
the vertical direction. More simulations at different
resolutions and aspect ratios are needed to quantify
the contribution to errors from grid aspect ratio.

Figure 12 plots the spatial differences in the IBM-
WRF and WRF solutions by showing contours of
velocity differences along the center line of the do-
main (coinciding with the peak of the hill). Here the
differences in velocity magnitude are calculated as√

u2
diff + v2

diff + w2
diff . Contour and color bar lev-

els are common for the three terrain slopes shown.
From these plots, it is clear that not only do the dif-
ferences between the two solutions increase as ter-
rain slope increases, but the differences are also
largest in the lower portion of the domain where
grid skewness is largest. The largest differences
are seen near the peak and in the lee of the hill.
This is the region where the terrain effects the flow
the most through speed-up over the peak and sep-
aration in the lee of the hill. Grid quality effects the
regions with varying velocity profiles more than in
the regions where the profiles or uniform or linear.
This was demonstrated in the previous example of
an atmosphere at rest.

As shown in equations 4 and 5, the Jacobian of
the coordinate transformation appears in the trun-
cation error term and can act in the same way that
error from finite differencing does, meaning the co-
ordinate transformation errors can create numeri-
cal diffusion which has a similar effect as viscos-
ity. A simulation was performed with the viscosity
increased to 30 m2 s-1, from the value of 20 m2

s-1 used in the previous simulations. As viscosity
increases, the actual viscosity becomes the dom-
inate source of diffusion, rather than truncation er-
ror from the finite difference scheme and coordinate
transformation. Figure 13 shows the differences in
velocity between the IBM-WRF and WRF solutions,
as in figure 12 for the two different viscosities. The
differences in the solutions decrease with increased
viscosity. As the behavior of the IBM is independent
of the prescribed viscosity, this decrease in differ-
ence can be attributed to parameterized turbulent
mixing becoming the dominant term over truncation
error.

Figure 12: Difference between the IBM-WRF and
WRF solutions for three different slopes (10, 20,
and 30 degrees) along the center line of the domain
and the peak of the hill. Contours are of the mag-
nitude of the velocity differences, including all three
velocity components. Contour levels and the color
bar are held constant for all three terrain slopes.
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Table 3: Domain averaged differences and velocity values for each velocity component for simulations with
an aspect ratio of 2 (∆z = 50 m). The max norm for the difference over the entire domain is also included.
All quantities have units of m s-1.

∆ϕave ϕIBMave ϕWRFave ∆ϕmax

10◦ slope u 0.0119 9.3042 9.3038 0.1455
v 0.0087 0.6943 0.6983 0.1327
w 0.0047 0.0025 0.0023 0.0588

20◦ slope u 0.0702 9.2488 9.2414 0.7303
v 0.0328 0.7249 0.7266 0.4438
w 0.0253 2e-4 0.0016 0.2132

30◦ slope u 0.0684 9.1353 9.0947 1.9825
v 0.0503 0.8214 0.8039 1.1865
w 0.0221 3e-5 5e-4 0.5563

Table 4: Domain averaged differences and velocity values for each velocity component for simulations with
an aspect ratio of 1 (∆z = 100 m). The max norm for the difference over the entire domain is also included.
All quantities have units of m s-1.

∆ϕave ϕIBMave ϕWRFave ∆ϕmax

10◦ slope u 0.1618 9.3164 9.3213 1.0395
v 0.0806 0.6941 0.7002 0.6935
w 0.0616 0.0025 -4e-4 0.1999

20◦ slope u 0.2264 9.2674 9.2652 1.8113
v 0.1089 0.7272 0.7285 1.4322
w 0.0817 0.0013 0.0013 0.6472

30◦ slope u 0.2268 9.1590 9.1216 3.1108
v 0.1182 0.8121 0.8157 2.1768
w 0.0814 0.0024 0.0029 0.9790
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Figure 13: Difference between the IBM-WRF and
WRF solutions for two different viscosities (20 and
30 m2 s-1) along the center line of the domain and
the peak of the hill. Contours are of the magnitude
of the velocity differences, including all three veloc-
ity components. Contour levels and the color bar
are held constant for both subfigures.

4 CONCLUSIONS

Errors due to terrain-following coordinates have
been quantified in three test cases: 2D scalar ad-
vection over topography, a 3D atmosphere at rest
over an isolated hill, and forced advection over a 3D
hill. In each of the two idealized test cases with an-
alytical solutions, errors disappeared almost com-
pletely in the IBM-WRF solution. Thus we were
able to use IBM-WRF as a reference for compar-
ison in a more complex 3D flow without an ana-
lytical solution. As the errors with terrain-following
coordinates are caused by poor grid quality, es-
pecially considering properties such as aspect ra-
tio and the orthogonality of coordinate surfaces or
skewness of grid cells, we also sought to quantify
the effects of these grid properties by varying these
parameters and directly comparing the WRF and
IBM-WRF solutions. When the quality of the terrain-
following solution deteriorates, the accuracy of the
solution benefits from using the immersed bound-
ary method instead. From our simulations, it is clear
that error from the terrain-following grid increases
with increasing slope, while the immersed bound-
ary method is an effective tool for eliminating error
at any slope. The error in the terrain-following grid
can be substantial, even with slopes as shallow as
10 degrees, depending on the quality of the grid and
the specifics of the problem being simulated (such
as discontinuities in the solution). While it was clear
from our simulations that grid aspect ratio and reso-
lution also contribute to the accuracy of the solution
(especially with terrain-following grids) more simu-
lations are needed to provide specific recommen-
dations on when the use of terrain-following grids
is acceptable and when the immersed boundary
should be used.
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