Probability of Cloud-Free Line of Sight (PCFLOS) derived from CloudSat Cloud Profiling Radar (CPR) and coincident CALIPSO lidar data

Donald L. Reinke, John M. Forsythe, Karen E. Milberger, and Thomas H. Vonder Haar

CIRA
Colorado State Univ.
Fort Collins CO
The Problem: CFLOS, beneath an opaque cloud layer, has been impossible to determine, directly, from passive space sensors.

Corollary: Passive satellites measure cloud tops well … and surface observers the bases … but neither do an adequate job of characterizing the intervening layers …
Addressing the Problem – Cloud Profiling Radar

Here an opaque cloud at “B” hides the fact that there is a poor CFLOS at levels below the cloud top, while at “A” it hides a significantly better CFLOS just below the upper cloud layer.

Passive vis/ir sensors likely see this cloud top as a homogenous opaque layer.
CloudSat: 94 GHz Cloud-Profiling Radar

Near circular, sun-synchronous orbit ... ~705km altitude, 14.5 orbits/day, 16-day revisit cycle
CloudSat: 94 GHz Cloud-Profiling Radar

Wavelength \(\sim 3 \text{ mm} \)

Near-nadir Pointing \((0.16^\circ \text{ forward})\)

Pulse Repetition Freq. \(\sim 4000 \)

- Return signal processed every 160 milliseconds \((\sim 6 \text{ times/sec})\)
- at 4000 PRF \(\ldots\) \(\sim 630\) pulses are averaged to produce a vertical cloud image \(\text{\textquotedblleft profile\textquotedblright}\)

160 msec = 1.07 km along ground track
Granules, Profiles and Bins: CPR footprint & granule size

1 GRANULE = 1 orbit of data (~40,786 km / ~37,082 profiles)

- Each "Profile" has 125 vertical "BINS" (~30 km)
- Each vertical bin is 240 m thick
- 1.7 km along-track
- 1.3 km
- 98.9 minutes per orbit
- 14.56 orbits/day
- (CALIOP) “Cloud-Aerosol Lidar with Orthogonal Polarization”
 - 532 and 1062 nm wavelengths
 - Nadir Pointing
 - Vertical resolution 30m, 60m (< 8km)
 - 80m instantaneous footprint
 - Products generated at a horizontal resolution of 333m, 1km, and 5km
For each CloudSat profile, CFLOS is determined by looking at 10° intervals from nadir to 90° (horizontal) at each of 20 vertical levels. These levels extend from .96-km to 19.2-km altitude at ~1-km intervals. (every 4 bins in the vertical = 4X240m = .96km)
CFLOS Calculation

CFLOS is calculated by determining the distance (km) that we can see before encountering a cloud. “0” indicates that we did not have a cloud in the line-of-sight.

<table>
<thead>
<tr>
<th>View angle from Nadir</th>
<th>Vertical Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 10 20 30 40 50 60 70 80 90</td>
</tr>
<tr>
<td>20</td>
<td>6 7 7 8 10 13 19 30 0</td>
</tr>
<tr>
<td>19</td>
<td>5 6 6 7 9 12 16 28 0</td>
</tr>
<tr>
<td>18</td>
<td>4 5 5 6 7 9 14 25 0</td>
</tr>
<tr>
<td>17</td>
<td>3 4 4 5 6 7 11 21 0</td>
</tr>
<tr>
<td>16</td>
<td>2 2 3 3 4 5 8 15 0</td>
</tr>
<tr>
<td>15</td>
<td>1 1 2 2 2 3 3 5 11 33</td>
</tr>
<tr>
<td>14</td>
<td>1 1 1 1 1 1 1 2 4 26</td>
</tr>
<tr>
<td>13</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>12</td>
<td>1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>11</td>
<td>0 0 0 0 0 0 0 0 0 2</td>
</tr>
<tr>
<td>10</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>9</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>8</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>7</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>6</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>5</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>4</td>
<td>0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 0 0 0 0 0 0 92</td>
</tr>
<tr>
<td>2</td>
<td>0 0 0 0 0 0 0 0 0 91</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 0 0 0 0 0 43</td>
</tr>
</tbody>
</table>
The probability of Cloud-Free-Line-of-Sight (PCFLOS) was generated for each month from June 2006 – Aug 2010.

PCFLOS – Observation Count & CFLOS Distance

Observation Count

January (2007-2010)

CFLOS Distance: For all of the following examples, if the distance to the first cloud encountered was greater than 25km, it was considered a Cloud-Free-Line-of-Sight. (or ... if there was a cloud-free view to the land/ocean surface)
Comparison With Typical Cloud Fraction Products

Probability of CFLOS from CloudSat CPR
Location: L20 (TOA)
View: Nadir
January

MODIS Cloud Fraction
(January 2007)
PCFLOS from CloudSat CPR

Probability of CFLOS from CloudSat CPR
Location: L20 (TOA)
View: Nadir
January 2007-2010

Probability of CFLOS from CloudSat CPR
Location: L20 (TOA)
View: Nadir
July 2006-2010
PCFLOS from CALIPSO Lidar

Probability of CFLOS from CloudSat CPR

Location: L20 (TOA)
View: Nadir
January 2007-2010

Probability of CFLOS from CloudSat CPR

Location: L20 (TOA)
View: Nadir
July 2006-2010
CFLOS from CloudSat CPR … Varying Levels
CFLOS from CloudSat CPR … Varying Levels

Probability of CFLOS from CloudSat CPR
January 2007-2010

10-km altitude
view: nadir

5-km altitude
view: nadir

2-km altitude
view: nadir
CFLOS from CloudSat CPR … Varying View Angle
PCFLOS from CloudSat CPR ... Varying View Angle

Probability of CFLOS from CloudSat CPR
January 2007-2010

5-km altitude view: Nadir

5-km altitude view: 50° off nadir

5-km altitude view: 60° off nadir

5-km altitude view: 70° off nadir

5-km altitude view: 80° off nadir
Summary ...

- CloudSat CPR data provides an exciting new view of the vertical distribution of cloud.

- This 3-D view can be used to calculate CFLOS at varying vertical levels and view angles.

- CPR-derived CFLOS can be used to validate CFLOS derived by "apriori cloud thickness" methods ... or for model cloud fraction initialization.

- PCFLOS Viewer
Visit the CloudSat Data Processing Center Website …

http://www.cloudsat.cira.colostate.edu