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1. INTRODUCTION

Since the 1940s, weather radar has proven
to be an invaluable tool in the prediction and de-
tection of tornadoes. Austin (1945) was the first
to use incoherent radar to document the classi-
cal “hook echo” signature, which forms in conjunc-
tion with the rear flank downdraft of a supercell.
Hook echoes were later associated with tornadoes
(e.g., Stout and Huff 1953; Fujita 1958). However,
a study by Forbes (1981) determined that not all
tornadoes are associated with a hook echo signa-
ture, or any sort of reflectivity signature, highlight-
ing the need for radial velocity measurements and
pulsed Doppler radar.

Observations of tornadoes using Doppler
radar during the 1960s and 1970s led to the dis-
covery of the Tornadic Vortex Signature (TVS) in
radial velocity data. The TVS, defined as a signif-
icant velocity difference at adjacent radials at the
same range, often develops at midaltitudes prior
to the development of a tornado and descends to-
ward the ground in classic supercell tornado cases
(Burgess et al. 1975; Brown et al. 1978).

The discovery of the TVS and the estab-
lishment of the Weather Surveillance Radar-1988
Doppler (WSR-88D) network greatly improved tor-
nado warning performance during the early 1990s
(Polger et al. 1994), and preliminary circulation de-
tection algorithms for the WSR-88D system were
developed. Further research and improved com-
puting capabilities led to the development of more
sophisticated algorithms during the latter half of
the decade (e.g., Mitchell et al. 1998). However,
the circulation detection algorithms currently in
use with the WSR-88D system are still prone to
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high false alarm ratios (Jones et al. 2004). Many
false detections are caused by ground clutter tar-
gets and aliasing in the velocity field (Jones et al.
2004). The need for a radar-derived shear quan-
tity that is immune to dealiasing errors and noisy
data prompted the development of the local, linear
least squares derivatives (LLSD) method for esti-
mating azimuthal shear (Smith and Elmore 2004).

The LLSD method estimates shear using
derivatives of the velocity field in neighborhoods
of different sizes. In contrast, the commonly used
peak-to-peak method simply uses the difference
between two peak velocity values in regions of
high velocity gradients to estimate shear. Peak-
to-peak shear estimates are strongly affected by
range from the radar, noise, and beam position in
relation to the circulation center; however, LLSD
shear is less dependent on radar location and
could potentially serve as a valuable parameter for
tornado detection (Smith and Elmore 2004).

In this work, the dependence of LLSD shear
on azimuthal resolution and range is explored.
Since LLSD shear appears to show some range
dependence, a regression equation is developed
to correct LLSD shear for range degradation. The
range correction is applied to radar data from two
tornado cases and corrected shear is compared to
the original shear field.

2. BACKGROUND

We are currently developing a circulation de-
tection algorithm which uses LLSD shear. This al-
gorithm is somewhat similar to other techniques
used in tornado detection algorithms but employs
different methods to associate shear regions in
space and time. Although the range dependence
of LLSD shear has been examined (Smith and El-
more 2004), the dependence of LLSD shear val-
ues on beamwidth has not yet been explored. This



dependence is pertinent to the National Weather
Radar Testbed Phased Array Radar in Norman,
Oklahoma, which uses a beamwidth that changes
with angle from boresight.

2.1. Tornado Detection Algorithms

Initially, development of an operational tor-
nado detection algorithm (TDA) was limited by
Doppler radar data availability and computing re-
sources. Prior to the deployment of the WSR-88D
network, most Doppler radar data from tornado
cases was collected in Oklahoma from mesocy-
clonic storms (Stumpf et al. 1998). Thus, early
TDAs (e.g., Zrnić et al. 1985; Donaldson and
Desrochers 1990) were developed, trained, and
tested using only a few tornado cases from a spe-
cific geographic area. However, these initial TDAs
performed well on the Oklahoma tornado cases
and some of the techniques developed are still
commonly used in TDAs.

The TDA currently used with the WSR-88D
system (Mitchell et al. 1998) emphasizes the dif-
ference between velocity values at constant range
and adjacent azimuths; if this velocity difference
exceeds a particular threshold, the gate pair is
saved as a shear segment. Shear segments are
then associated in range and height. An as-
pect ratio check is included to eliminate elongated
shear regions associated with gust fronts or other
nontornadic regions. Three-dimensional features
are either classified as TVSs or elevated TVSs.
Detected circulations are tracked and trend and
strength information is displayed.

Liu et al. (2007) discuss several issues re-
lated to using the gate-to-gate velocity difference
to detect tornadoes. The actual value of this dif-
ference can be affected by the azimuthal offset
of the radar beam center from the vortex (e.g.,
Wood and Brown 1997), as well as noisy data
and velocity aliasing. In addition, the azimuthal
resolution degrades with range as the radar beam
widens, leading to less accurate velocity measure-
ments at far ranges. To mitigate these issues,
Liu et al. (2007) propose using a wavelet analy-
sis technique to measure the average velocity dif-
ference between regions of different scales. This
technique utilizes velocity data at several different
points, so it is less susceptible to noisy or inaccu-
rate data. It also considers circulations at a variety
of scales, and thus can detect both tornado and
mesocyclone-scale circulations.

Yu et al. (2007) suggest the use of Doppler

spectra to identify tornadic regions in the radial ve-
locity field. Unlike the TVS, Yu et al. (2007) argue
that characteristics of a tornadic Doppler spectrum
do not significantly degrade with range, making
them ideal for tornado detection. Following the re-
sults of Yu et al. (2007), Wang et al. (2008) de-
veloped a TDA that uses spectral signatures and
a fuzzy logic system to make detections. By ex-
amining histograms of different variables from two
Oklahoma cases, Wang et al. (2008) determined
that values of these parameters overlapped signif-
icantly for tornadic and nontornadic scans. Thus,
instead of simply thresholding variables, Wang
et al. (2008) suggest using a fuzzy logic system
to integrate parameters.

Since time-series data are not currently avail-
able operationally, the Wang et al. (2008) TDA can
only be applied to a few tornado cases. However,
Wang and Yu (2009) modified this TDA for a typi-
cal operational WSR-88D radar. Different versions
of the Wang et al. (2008) TDA were developed
that accepted different combinations of parame-
ters, depending on whether time-series, polarimet-
ric, or solely moment data were available.

2.2. LLSD Shear

Estimates of azimuthal shear that use the dif-
ference between peak velocity values can be af-
fected by radar beam location and noisy data, as
discussed in the previous section. This “peak-to-
peak” azimuthal shear estimate is given by the fol-
lowing equation:

shearptp =
Vmax − Vmin

d
(1)

Vmax and Vmin are the maximum and mini-
mum velocities associated with the circulation, re-
spectively, and d is the distance between them.
As an alternative to the peak-to-peak shear cal-
culation, Elmore et al. (1994) propose a method of
estimating the derivatives of radial velocity values.
This method involves fitting a plane to the velocity
field and finding the slope of that plane, or equiv-
alently, estimating the azimuthal derivative of the
velocity.

An estimate of the azimuthal derivative of the
radial velocity is given by

∂Vr

∂θ
=

∑
sijVijwij∑

(∆sij)2wij
(2)



where Vr is the radial velocity, θ is the azimuth
angle, sij is the distance from the point where the
calculation is being evaluated to the point (i, j) in
the neighborhood of the point of interest, Vij is the
radial velocity at (i, j), and wij is a weight function.
This estimate of the azimuthal shear is known as
the local, linear least squares derivatives (LLSD)
method.

Smith and Elmore (2004) applied the LLSD
shear estimate to simulated and observed circula-
tions. First, the velocity data were passed through
a 3x3 median filter to eliminate noise. Next, Equa-
tion 2 was applied to the filtered velocity data to
estimate the azimuthal shear. The radial and az-
imuthal dimensions of the kernel used in the calcu-
lation were held constant, such that fewer radials
were used in the calculation at far ranges.

Smith and Elmore (2004) simulated circula-
tions of varying strengths and diameters at ranges
from 20 to 200 km, adopting the Rankine vortex
simulation described by Wood and Brown (1997).
Noise was added to the velocity data and random
azimuthal offsets from the beam centerline were
added to the circulation location to simulate real
sampling limitations. For each range, 1000 cir-
culations were simulated with different noise val-
ues and azimuthal offsets, and mean and 95%
confidence intervals were calculated for LLSD and
peak-to-peak shear. Calculations for a 5-km diam-
eter vortex using a 2.5 km kernel indicated that the
LLSD shear value is within 20% of its true value
out to a range of ˜140 km, with a much smaller
variance than peak-to-peak shear.

In addition, azimuthal position errors were ex-
amined for the two shear calculations. For peak-
to-peak shear, the circulation center was assumed
to be located halfway between the peak maxi-
mum and minimum velocity values, while for LLSD
shear, the circulation center was assumed to be
collocated with the shear maximum. The az-
imuthal position errors for LLSD shear were much
smaller, particularly at far ranges.

Since LLSD shear utilizes velocity data at mul-
tiple points, it’s less susceptible to noise and ve-
locity aliasing. LLSD shear estimates also display
less variance at far ranges in comparison to peak-
to-peak shear, as shown by Smith and Elmore
(2004). Since LLSD shear degrades with range,
a range-dependent threshold would be necessary
for a TDA that uses LLSD shear. In this paper, a
range correction is applied to LLSD shear values
such that a single threshold can ideally be used to
detect significant circulations at all ranges.

2.3. Identifying and Tracking Shear Clusters

The circulation detection algorithm currently
being developed at NSSL uses the LLSD shear
field as an input parameter. This algorithm (here-
after LLSD TDA) first segments the LLSD shear
field into clusters of local shear maxima, then
produces motion estimates and attempts to track
these clusters with time.

Clusters are initially identified using the ex-
tended watershed transform developed by Laksh-
manan et al. (2009). Starting at a local maximum,
an azimuthal shear region is grown until it reaches
a specific size threshold. Size thresholds and up-
per and lower limits for the local maxima are user-
specified; local maxima below the lower threshold
are not used to form shear clusters.

The motion estimate for each cluster is found
by minimizing the mean absolute error between
the cluster in the current scan and corresponding
pixels in the previous scan; whichever motion vec-
tor minimizes this error is selected as the best mo-
tion estimate (Lakshmanan et al. 2003). After mo-
tion estimates have been produced, clusters are
associated in time (Lakshmanan and Smith 2010).

The LLSD TDA is the first circulation detec-
tion algorithm to incorporate the LLSD shear field.
LLSD shear and divergence have previously been
used in a downburst detection algorithm (Smith
et al. 2004). LLSD shear has also been used to
estimate vorticity from phased array radar data for
a reintensifying supercell case (Heinselman et al.
2008).

Similar to the wavelet TDA (Liu et al. 2007),
the LLSD TDA identifies circulations at different
scales using size thresholds. The LLSD TDA also
utilizes velocity data at several different points to
make shear calculations, as in Liu et al. (2007).
Since pixels are added to shear clusters in the
LLSD TDA until the clusters reach a size thresh-
old, there is no need to associate shear segments
in range and azimuth to create shear regions (e.g.,
Zrnić et al. 1985; Stumpf et al. 1998). Adja-
cent shear clusters within a user-specified dis-
tance may be combined in the LLSD TDA to reach
the size threshold.

Like the NSSL MDA, the LLSD TDA projects
shear clusters in time using the estimated motion
vector and uses a search radius to associate clus-
ters in time. The NSSL MDA uses either the pre-
vious motion vector of the circulation centroid or
the average of all the circulation motion vectors in
the previous volume scan. In contrast, the LLSD



TDA minimizes the error between projected clus-
ter locations and actual cluster locations in the
current scan to produce motion estimates. Fur-
ther LLSD TDA developments could incorporate
machine learning techniques, such as neural net-
works and fuzzy logic, to make circulation detec-
tions.

2.4. Resolution Correction Techniques

Donaldson and Desrochers (1990) and
Desrochers and Donaldson (1992) apply reso-
lution corrections to circulation diameters and
velocities to mitigate effects of limited radar
resolution. The correction factors, based on the
work of Brown and Lemon (1976), depend on the
beamwidth to core radius ratio (BW/CR).

Chumchean et al. (2004) apply a range cor-
rection to radar reflectivity to correct the range-
dependent bias in rainfall estimates. Like velocity
estimates, reflectivity estimates are also affected
by the increase in radar resolution volume with
range; at far ranges, small features in the reflec-
tivity field are “smoothed out” because of the in-
creased beamwidth. However, a range correction
has not yet been applied to azimuthal shear esti-
mates.

2.5. National Weather Radar Testbed Phased Ar-
ray Radar

The National Weather Radar Testbed Phased
Array Radar (hereafter PAR) is an S-band (˜10-
cm) research radar located in Norman, Oklahoma.
Unlike a WSR-88D radar, the PAR operates by
changing the phases of individual transmit/receive
elements to steer the radar beam in azimuth and
elevation. Electronic beam steering offers several
potential advantages over conventional mechan-
ical steering, including a 75% reduction in volu-
metric scan time (compared to a WSR-88D radar)
and the ability to adaptively scan regions of inter-
est (Zrnić et al. 2007).

The beamwidth of the PAR increases gradu-
ally with increasing angle from boresight, ranging
from 1.5◦ at boresight to 2.1◦ at an angle of 45◦

from boresight. Note that an operational phased
array radar would likely have a beamwidth that
may not change with angle from boresight (Zhang
et al. 2010). Overlapped sampling is used, such
that the azimuthal sampling interval at a particular
location is equal to one half of the beamwidth at

that location. The range resolution of the PAR is
240 m (Zrnić et al. 2007).

Although PAR data has been used to calcu-
late the LLSD shear and divergence fields (e.g.,
Heinselman et al. 2008), previous research has
not been completed on the effects of the broad-
ening PAR beam on azimuthal shear and velocity
estimates.

3. COMPARISON OF LLSD AND PEAK-TO-
PEAK AZIMUTHAL SHEAR

To examine the effects of radar beamwidth
and azimuthal resolution on LLSD and peak-to-
peak shear calculations, the WSR-88D radar sim-
ulation developed by Wood and Brown (1997) was
used. This simulation creates modified Rankine
(1901) vortices with user-specified peak velocities,
core diameters, and ranges. Gaussian-distributed
noise was added to the velocity values and ran-
dom azimuthal offsets from the beam centerline
were added to the circulation center location.

A vortex with a peak velocity of 25 m s−1 and
core diameter of 2.5 km was simulated every 5 km
for ranges from 20 to 200 km. Similar to Smith and
Elmore (2004), 1000 vortices with different noise
values and azimuthal offsets were simulated for
every range, and mean and 95% confidence in-
terval values were computed. A 2.5 km kernel
was used to make calculations, and a minimum of
three radials was required for the LLSD algorithm.

Fig. 1a shows the shear values and confi-
dence intervals associated with a typical WSR-
88D radar. A WSR-88D radar operating in super-
resolution mode has a 1.02◦ effective beamwidth
due to antenna rotation (e.g., Brown et al. 2002).

The LLSD shear estimates display much less
variance than the peak-to-peak shear estimates,
particularly at far ranges. (Note that jumps in
the LLSD shear estimates are due to changes in
the number of radials used in the calculation. A
smoothing function is currently being developed
to mitigate these effects at ranges near kernel
changes.) Since the LLSD shear algorithm ap-
plies a median filter and utilizes velocity data at
several different points, it is not strongly affected
by noise or beam location. Fig. 1b compares
the shear estimates to the true peak-to-peak value
for different ranges. The LLSD shear estimate is
within 60% of the true value up to ˜130 km, while
the peak-to-peak shear estimate is within this ac-
curacy up to ˜200 km. The difference in these
ranges is the result of the effective “smoothing”



caused by the LLSD shear median filter. For cir-
culations with larger diameters, the LLSD shear
values are closer to the peak-to-peak values at far
ranges (see Smith and Elmore 2004).

Figs. 2 and 3 show similar results to Fig. 1, but
for the PAR at boresight and at 45◦ from boresight,
respectively. Even when the vortex is sampled by
a radar with a 2.1◦ beamwidth, the LLSD shear
values still display very little variance in compari-
son to the peak-to-peak shear. After the smooth-
ing function has been developed to interpolate
shear values at ranges near kernel changes, the
effects of beamwidth on the two shear calculations
will be examined in greater detail. Ideally, the es-
timated shear would not be strongly affected by
beamwidth, so that a specific circulation will dis-
play roughly the same shear signature for differ-
ent radars. Since the LLSD shear method utilizes
derivatives of the velocity field, rather than spe-
cific velocity values, it should be less radar and
beamwidth-dependent.

4. TORNADO CASES

Radar data for 31 confirmed tornadoes were
used to examine the effects of tornado strength
and range on LLSD shear signatures. These tor-
nadoes encompassed a variety of geographical
regions and convective modes. Tables 1 and 2
summarize the locations and strengths of the tor-
nadoes used in the study. The distribution was
heavily weighted toward weaker tornadoes (EF0
and EF1), since it’s likely that the shear signatures
of these tornadoes are strongly affected by range.
In addition, weak tornadoes tend to occur more
frequently, while EF4 and EF5 tornadoes are ex-
ceedingly rare (e.g., Trapp et al. 2005). Thus, the
tornadoes selected for the study roughly represent
the climatological distribution of tornadic intensity.

4.1. Extracting Shear Values

Tornadoes were analyzed using Doppler radar
data from the nearest WSR-88D radar for each
case. Two tornadoes from the 10 February 2009
Oklahoma case were also tracked using PAR data.
Paths were determined by tracking regions of
maximum LLSD shear, using ground truth reports
for guidance where available. For each volume
scan and elevation angle, an algorithm searched
for the maximum LLSD shear value within a 5 km
radius of a user-specified point. To allow for a pos-
sible increase in circulation size with height, the

search radius was expanded to 7.5 km at upper
levels.

Tornadoes were tracked from roughly ten min-
utes before the first damage report to ten minutes
after the last damage report. The maximum LLSD
shear value for each volume scan was defined as
the maximum shear value that was measured be-
low 3 km while confirmed tornado damage was oc-
curring. For tornadoes at far ranges, values from
the 0.5◦ elevation angle were used. The “precur-
sor” LLSD shear value was defined as the lowest
maximum LLSD shear value that occurred in the
ten minutes prior to tornado damage reports. This
precursor value could potentially serve as a shear
threshold for a circulation detection algorithm.

4.2. Distribution of Shear Values

Fig. 4 shows the normalized frequency of
maximum and precursor shear values for the data
set. The number of tornadoes in each shear bin
was normalized by the total number of tornadoes
used for the histogram. Fig. 4c and d show the
frequencies separated by range from the radar.

Both the maximum and the precursor shear
values display a Gaussian-like distribution, with
the majority of tornadoes producing intermediate
shear values and a few tornadoes producing low
and high shear values. When separated by range,
the histograms reveal a potential range bias. The
shear values at closer ranges tend to be higher
than the shear values at far ranges. Since the per-
centage of weak tornadoes in the study at each
range interval is roughly the same (see Table 2),
it’s likely that shear degradation with range is pri-
marily responsible for the discrepancies in the his-
tograms. This difference is even more evident for
the shear precursor values (Fig. 4d).

Histograms for EF0 and EF1 tornadoes re-
veal significant overlap in the shear values for the
weakest tornadoes (Figs. 4e and f). This overlap
could be an issue for a forecaster or radar opera-
tor trying to estimate tornado strength from LLSD
shear data. An EF1 tornado could produce signifi-
cantly more damage than an EF0 tornado, and hy-
pothetically should have a correspondingly higher
LLSD shear value. Ideally, LLSD shear magnitude
would increase with increasing tornado strength,
but this is not the case when the shear signa-
ture has been affected by range and other radar-
dependent parameters.

Cumulative frequency distributions (CFDs)
were also calculated for the maximum and precur-



sor shear values. The cumulative frequency for a
particular shear value can be interpreted as the
probability that an arbitrary future shear value will
be lower than this shear value (Wilks 2006). The
Tukey estimator (Wilks 2006) was used to calcu-
late the CFD functions.

Fig. 5 shows the graphs of the CFD functions.
The intersection of the 10% probability line with
the CFD reveals the shear value which 90% of
future tornadic shear values are expected to ex-
ceed. Thus, this shear value could be used as
a threshold in a circulation detection algorithm.
Based on the distribution in Fig. 5, the maximum
and precursor “threshold” LLSD shear values are
0.01 s−1 and 0.008 s−1, respectively. However,
Figs. 5c and d reveal that this threshold shear
value is strongly range-dependent. The differ-
ence between the 0–50 km and 100–150 km shear
threshold values is nearly 0.01 s−1. Since LLSD
shear is generally only on the order of 0.01 s−1

for mesocyclone-scale circulations (Smith and El-
more 2004), this range dependence is a signifi-
cant issue. The range dependence of the shear
thresholds garnered from the CFD functions was
the motivation for a shear range correction.

5. RANGE CORRECTION FOR LLSD SHEAR

Two equations (a “near range” equation and
a “far range” equation) were developed to correct
LLSD shear values for degradation due to range
from the radar. Thousands of Rankine vortices
were simulated and used as input for a regression
equation relating measured circulation parameters
to true azimuthal shear.

Circulations were simulated with various di-
ameters, peak velocities, and ranges using the
simulation described in section 3. Simulated di-
ameters ranged from 1 to 4 km in increments of
0.25 km, and peak velocities ranged from 20 to 50
m s−1 in increments of 2 m s−1. A radar with a
0.5◦ azimuthal sampling interval and a 1.02◦ ef-
fective beamwidth was used. For each circula-
tion, 1000 simulations were produced with differ-
ent noise patterns at ranges from 5 to 140 km in
increments of 5 km. Mean values of parameters
were calculated from the 1000 iterations and used
in the equation.

A multiple linear regression technique (Draper
and Smith 1998) was used to develop the range
correction equations. The predictors in the equa-
tions are measured LLSD shear value, measured
peak velocity, the inverse of the estimated diame-

ter, and range. The circulation diameter was esti-
mated by finding the distance between peak posi-
tive and negative velocity values.

The output of the equation is an estimate of
the “true” azimuthal shear. This true value is as-
sumed to be the same as the peak-to-peak shear
value, calculated using the true peak velocity and
diameter values.

5.1. Selecting Diameters for Regression Equa-
tions

Before the regression equation was devel-
oped, the shear degradation of circulations of dif-
ferent diameters was examined. If the measured
shear values from a particular circulation are not
significantly different from the true shear value,
there is no need to apply a shear correction.

Since LLSD shear values are generally on the
order of 0.01 s−1 (Smith and Elmore 2004), a
measured shear value that was more than 0.01
s−1 different from the true shear value was de-
clared to need a range correction. Shear error,
defined as the difference between the true and
measured shear values, was plotted for different
diameters and ranges (Fig. 6). In general, error
increases with increasing peak velocity and range.
These plots were used to determine at what range
a correction would first be needed for each diam-
eter. For circulations with diameters greater than
or equal to 3 km, a range correction is not needed
through a range of 140 km. Thus, only circulations
with diameters from 1 km to 2.75 km were used to
develop the regression equations.

5.2. Resolution Issues

Clearly, a circulation with a 1-km diameter will
not be resolved at a range of 140 km. The min-
imum resolvable diameter at a particular range is
limited by the beamwidth of the radar, which grows
wider with range. Since the regression equations
rely upon an accurate diameter measurement, a
range correction can only be applied to circula-
tions that are well-resolved.

The mean estimated diameter was calcu-
lated for circulations with different peak velocities,
ranges, and true diameter values. If the estimated
diameter differed from the true diameter by more
than 10% at six or more velocities for a circulation
at a particular range, the circulation was declared
unresolvable at that range. Unresolvable circula-
tions were not included in the regression equation.



5.3. Resulting Equations

When all diameters between 1 and 2.75 km
were included in a regression equation, the equa-
tion performed well for larger diameters but poorly
for the smallest diameters. Thus, two separate
equations were developed — a “near” equation for
smaller diameters and a “far” equation for larger di-
ameters. The near equation can only be applied at
ranges out to 85 km, while the far equation can be
applied out to 135 km. Diameters from 1 to 1.75
km were used to develop the near equation and
diameters from 2 to 2.75 km were used to develop
the far equation. The diameters for the two equa-
tions were selected by examining the resolvable
ranges for each diameter. A 1.75-km diameter cir-
culation is only resolvable at ranges less than 85
km, while a 2-km diameter circulation is resolvable
out to 100 km. This large difference in resolvable
ranges was used to separate the diameters into
two different equations.

The final near range equation is:

s∗ = −0.0734 + 0.0872D−1 + 0.00179V −
0.0884s + 0.000248r

where s∗ is the corrected shear, D is the
diameter in km, V is the maximum measured
velocity in m s−1, s is the measured LLSD shear
in s−1, and r is the range in km. The near
equation can be applied at ranges out to 85 km
for diameters between 1 and 1.75 km with the
following stipulations:

If Range ≥ 50 km, Diameter must be ≥ 1.25 km
If Range ≥ 65 km, Diameter must be ≥ 1.5 km
If Range ≥ 75 km, Diameter must be ≥ 1.75 km

These stipulations correspond to the the mini-
mum resolvable scale at each range.

The final far range equation is:

s∗ = −0.0431 + 0.0855D−1 + 0.000921V +
0.0723s + 9.97e−5r

The far equation can be applied at ranges out
to 135 km for diameters between 2 and 2.75 km
with the following stipulations:

If Range ≥ 100 km, Diameter must be ≥ 2.25 km
If Range ≥ 110 km, Diameter must be ≥ 2.5 km
If Range ≥ 120 km, Diameter must be ≥ 2.75 km

The results for the near and far equations are
shown in Fig. 7. There are several corrected shear

estimates for every true shear value, because cor-
rected shear values for all ranges are shown —
the different shear estimates correspond to differ-
ent ranges.

The R2 (Wilks 2006) values for both the near
and far equations are fairly high — 0.9648 and
0.980, respectively. The near equation performed
the most poorly for the strongest and weakest 1-
km diameter circulations. The far equation per-
formed the most poorly for the strongest 2-km di-
ameter circulations (velocity > 45 m s−1) at far
ranges. For both equations, the regression ap-
peared to show the most skill for circulations of
intermediate diameters and velocities.

5.4. Application of the Regression Equations

Before the regression equations are applied
to circulations in real radar data, a set of rules re-
garding the range and estimated size of the cir-
culation must be established such that the appro-
priate equation is used. This set of rules is illus-
trated in the flowchart below. The range correction
is only applied to circulations that are resolvable
and need a correction.

Several practical issues limit the effectiveness
of the range correction equations. First, the equa-
tions assume that the circulation can be modeled



as a Rankine vortex, which is often not true in na-
ture (e.g., Desrochers and Harris 1996). Second,
diameter estimates are limited by the width of the
radar beam; thus, the diameters of small circula-
tions can be easily overestimated, particularly at
ranges far from the radar. For example, a 1 km
vortex could appear as a 1.75 km vortex if it’s lo-
cated at a far range, and the output of the range
correction equation would be inaccurate. How-
ever, any range corrected value would tend to be
closer to the circulation’s true shear value, even if
the diameter estimate is inaccurate.

6. APPLYING RANGE CORRECTION TO REAL
DATA

The range correction equations were applied
to LLSD shear data from two tornado cases in
the initial test set — the 10 February 2009 event
in Oklahoma and the 22 October 2009 event in
Louisiana. Both events were sampled by a WSR-
88D radar operating in super-resolution mode
(KTLX in Twin Lakes, Oklahoma and KLCH in
Lake Charles, Louisiana). LLSD shear was cal-
culated using the velocity data from both events.
Maximum LLSD shear, peak velocity, and esti-
mated diameter values from the 0.5◦ elevation an-
gle were extracted along tornado tracks and used
as input for the range correction equations.

6.1. 10 February 2009 — Oklahoma

On 10 February 2009, a strong upper-level
trough moved through the Southern Plains region.
Low-level moisture was advected from the Gulf of
Mexico and a surface dryline was established dur-
ing the day. A midlevel jet aided in the devel-
opment of strong low-level shear and enhanced
the likelihood for supercell and tornado formation.
Several supercells formed in central and western
Oklahoma and spawned tornadoes. A cyclic su-
percell moved through the western side of Okla-
homa City and produced at least three tornadoes
during its lifetime.

The cyclic supercell was tracked for one hour,
as it produced two EF1 tornadoes and one EF2
tornado, and maximum shear values were ex-
tracted. Since the estimated circulation diameter
was less than 1 km for several volume scans, it’s
likely that the shear values at these times are more
representative of a tornado, rather than the sur-
rounding mesocyclone.

Fig. 8 shows the results from the range cor-

rection. Most of the corrected shear values are
an order of magnitude larger than the measured
LLSD shear values. Furthermore, the tornado for-
mation times are more readily apparent from the
temporal trends in the corrected shear. The super-
cell produced tornadoes at approximately 20:34,
20:53, and 21:23 UTC. These times correspond
well to peaks in the corrected shear plot; this sig-
nal is not as clear in the noisier measured LLSD
shear field. In addition, the relative magnitudes
of the peak corrected shear values roughly corre-
spond to tornado intensity. EF1 tornadoes were
produced at 20:34 and 21:23 UTC, and the EF2
tornado was produced at 20:53 UTC. The peak
corrected shear values during the time of the EF2
tornado are an order of magnitude larger than the
peak shear values during the EF1 tornadoes. In
contrast, the measured shear values during the
first EF1 tornado are the same order of magni-
tude as those observed during the EF2 tornado;
the difference in strength between the two torna-
does cannot be easily discerned from the mea-
sured shear data.

6.2. 22 October 2009 — Louisiana

On 22 October 2009, the remnants of an At-
lantic hurricane moved through Louisiana, sup-
plying moisture and upper-level divergence. Dur-
ing the morning and early afternoon of 22 Octo-
ber, central/southern Louisiana was located in the
warm sector of a surface low pressure system. A
low-level jet enhanced low-level shear, and rotat-
ing storms were forecasted by the Storm Predic-
tion Center.

Although the primary convective mode was
quasi-linear, a few supercells formed in southeast-
ern Louisiana and produced tornadoes. One of
these supercells was tracked for two hours as it
produced five tornadoes — three EF0 tornadoes
and two EF1 tornadoes. The supercell was lo-
cated at ranges between 45 and 92 km from KLCH
when it was tracked. Since several estimated cir-
culation diameters were smaller than 1.5 km, a few
of the regression equation rules were violated to
apply the equations.

The range correction results are shown in Fig.
9. Tornadoes were produced at approximately
17:05, 17:22, 17:47, 18:05, and 18:15 UTC. The
second and third tornadoes were rated EF1, and
the remaining tornadoes were rated EF0.

The measured shear values between 17:30
and 18:15 UTC are significantly smaller than those



measured during the beginning of the data set. At
the end of the supercell’s lifetime, it had started
moving away from KLCH; this difference in range
could explain the difference in measured shear
magnitude. The range difference did not appear
to have a significant impact on the corrected shear
values.

Similar to the Oklahoma case, the corrected
shear values are an order of magnitude larger than
the measured shear values. Again, the peaks in
the corrected shear values correspond fairly well
to tornado formation times. The measured shear
values show this trend to some extent as well, al-
though the peaks in the measured shear are not
as well-defined. This discrepancy can be partially
attributed to the range of shear values present in
the measured and corrected shear fields. The
larger jumps in the corrected shear field make it
easier to differentiate between tornadic and non-
tornadic time periods.

Unlike the Oklahoma case, tornado strength
could not be easily discerned from either the mea-
sured or corrected shear magnitudes. In fact,
the first tornado, rated EF0, produced the highest
shear values of the entire time period. It’s possible
that differentiating between EF0 and EF1 torna-
does is more difficult than differentiating between
EF1 and EF2 tornadoes, as was the case for the
Oklahoma event. In addition, parameters such as
storm-relative motion must be taken into account
to produce more accurate corrected shear values.
Storm-relative motion will be taken into account in
future work.

7. SUMMARY

The LLSD shear method was introduced and
related to previously used tornado detection tech-
niques. Since LLSD shear is less radar-dependent
than peak-to-peak shear, it could potentially be
used to detect tornadoes with significant skill. In
addition, the LLSD shear method is not strongly
affected by noisy velocity data, since it utilizes a
region in the velocity field, rather than just a few
points. Although further research is needed, LLSD
shear also does not appear to be strongly affected
by changes in beamwidth.

The LLSD shear signatures for 31 tornadoes
were examined and stratified by range from the
radar. It was revealed that if a simple thresholding
scheme was used to make tornado detections, this
LLSD shear threshold would depend upon range
from the radar. Regression equations were devel-

oped to correct LLSD shear for range degradation,
and the resulting range correction was applied to
LLSD shear values from two tornadic storms. The
range correction increased shear values by an or-
der of magnitude and made it easier to differenti-
ate between tornadic and nontornadic shear val-
ues.

Future work will include the use of storm-
relative motion, rather than radial velocity, in the
range correction equations. The range correc-
tion equations also should be tested on realistic,
simulated radar data with circulations of known
strength and size, such that the true accuracy of
the range correction can be examined.
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Figure 1: a) LLSD and peak-to-peak shear versus range for a 2.5-km diameter vortex with a peak velocity
of 25 m s−1. Solid lines are mean values; shaded regions indicate 95% confidence intervals. Vortex is
sampled by a simulated radar with a 0.5◦ azimuthal sampling interval and a 1.02◦ effective beamwidth.
True shear value is 0.02 s−1. b) Percent of true shear value versus range for the same vortex.
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Figure 2: As in Fig. 1, but for a radar with a 0.75◦ azimuthal sampling interval and a 1.5◦ effective
beamwidth.
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Figure 3: As in Fig. 1, but for a radar with a 1.05◦ azimuthal sampling interval and a 2.1◦ effective
beamwidth.
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Figure 4: Normalized histograms of maximum and precursor LLSD shear values for tornado cases. c) and
d) show histograms separated by tornado range. e) and f) show histograms separated by tornado intensity.
Bin width for LLSD shear maximum histograms is 0.003 s−1. Bin width for LLSD shear precursor histograms
is 0.001 s−1.
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Figure 5: Cumulative frequency distribution functions for maximum and precursor LLSD shear values from
tornado cases. c) and d) show functions separated by tornado range. The solid black line denotes the 0.1
(10%) probability that a future shear value will be lower than a given shear value.



Figure 6: Shear error vs. true velocity for diameters from 1 to 2.75 km (circulations with diameters greater
than 2.75 km did not require a range correction for ranges out to 140 km). Different lines in each plot
correspond to errors at different ranges (5 km to 140 km in increments of 5 km). Red lines indicate ranges
for which the shear error exceeds 0.01 s−1 at three or more velocity points. These ranges define the location
where a range correction is first needed for each diameter.
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Figure 7: Results from near and far regression equations. Blue circles are corrected shear calculated from
the regression equation (“regression shear”) Black line shows location where corrected shear is equal to
true shear (perfect fit).
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Figure 8: Measured and corrected shear values for a cyclic supercell from the 10 February 2009 Oklahoma
case. a) shows original uncorrected shear, and b) shows measured and corrected shear on the same axis.
Circles show actual times and shear values for low-level radar scans. Red lines denote approximate tornado
times.
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Figure 9: As in Fig. 8, but for 22 October 2009 Louisiana case.



Table 1: Tornado case dates and locations.

Date State Number of tornadoes
05/28/2008 Iowa 1
07/24/2008 New Hampshire 1
02/10/2009 Oklahoma 5
04/10/2009 Tennessee 7
04/19/2009 Alabama 7
08/19/2009 Illinois 4
08/19/2009 Iowa 1
10/22/2009 Louisiana 5

Table 2: Tornado intensities and ranges.

Intensity Number of tornadoes
EF0 10
EF1 15
EF2 3
EF3 1
EF4 1
EF5 1

Range Number of tornadoes (% that were EF0 or EF1 tornadoes)
0-50 km 7 (66.7)

50-100 km 14 (86.7)
100-150 km 10 (80)


