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1. INTRODUCTION 
 
 The wind field around an intense atmospheric 
vortex such as a dust devil, tornado and mesocyclone 
can be accurately depicted using a parametric wind-
profile model if the driving parameters are accurately 
determined.  Wood and White (2011, henceforth WW) 
developed a new parametric model to depict a realistic-
looking tangential-wind profile that closely resembles 
that of any vortex.  The profile employs five key 
parameters: maximum tangential wind, radius of 
maximum tangential wind, and three power-law 
exponents that shape different parts of the velocity 
profile, including a new one that controls the broadly- or 
sharply-peaked profile in the annular zone of tangential 
velocity maximum. 
 The objective of this paper is to test and verify the 
effectiveness and versatility of the Wood-White 
parametric wind-profile model by using numerical and 
analytical tangential wind measurements.  The unsteady 
Burgers (1948)-Rott (1958) vortex model and the 
tornado numerical tangential-wind outputs of Trapp 
(2000) represent evolving simulated vortices.  The 
analytical and numerical tangential speeds in the form 
of radial profiles radiating from the center of the vortex 
provide useful data and verify the WW parametric 
model. 
 
2. A PARAMETRIC MODEL FOR TANGENTIAL 
 WIND PROFILE 
  
 The new parametric vortex wind-profile model was 
formulated by Wood and White (2011).  The model is 
given as 
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where V  is a tangential velocity that varies with radial 

distance ( r ) from a vortex center; T],,,,[ λnkRV xx=m  

represents a model vector of the five parameters; xR  is 

the radius at which a tangential velocity peak value ( xV ) 

occurs; xRr /=ρ  is the dimensionless radial distance 

from the vortex center; k , n  and λ  are the power-law 
parameters that control different parts of the velocity 
profile, as will be described in the subsequent 
subsection. 

 
2.1 The Physical Behaviors of the Tangential 
Velocity Profiles 
 
 The plots in Fig. 1 were prepared in order to help 
understand the roles of varying k , n  and λ  values on 
the behaviors of the radial profile families of tangential 
velocity at a given height.  To facilitate comparison with 
the profiles, normalized composites are constructed that 
beneficially preserve the underlying tangential wind 
structure.  Each individual profile is expressed in the 
convenient dimensionless form utilizing the typical 
scales, xV  and xR .  The radial profile families of 

normalized tangential velocity as functions of ρ , k , n  

and λ  are represented by the solid curves with and 
without being joined by circles and x’s (Fig. 1).  In each 
panel of the figure, three varying values of n  are 
presented for a selected value of k .  As one 
progresses from the top panels through middle to the 
bottom panels, k  and n  remain unchanged with 
decreasing λ . 

 The power-law exponent k  in kρ  of (1) primarily 

controls the inner tangential velocity profile near the 
vortex center ( 0=ρ ).  When 1<k  ( 1>k ), the radial 

profile has negative (positive) curvature.  In other 
words, the curve turns to the right (left) with increasing 
ρ .   As one progresses from the left panels through 

middle to the right panels of Fig. 1, the curvature of the 
tangential velocity profile near 0=ρ  progressively 

changes its direction from negative through zero to 
positive. 
 When 1=k , the V-shaped profile of tangential 
velocity near 0=ρ  produces zero curvature with 

increasing ρ .  This means that the tangential velocity 

increases linearly, indicating solid-body rotation of fluid 
in a vortex core with constant angular velocity (see 
second column of Fig. 1, for example). 
 The second power-law exponent n  in (1) mainly 
governs the decay profile beyond xR .  The higher 

(lower) the n  value the more rapidly (slowly) the 
tangential velocity decreases with ρ .  It is important to 

mention that the velocity profile exists only for 
nk <<0 .  When nk = , the profile is perfectly flat 

where the vortex cannot exist. 
 The last power-law exponent, represented by λ  in 
(1), basically controls the “peakness” of the wind profile, 
meaning that the region of the highest tangential wind 
can be made broader or narrower.  As λ  changes from 
1.0 to approximately zero, a rounded peaked profile of 

__________________________ 
Corresponding author address:  Vincent T. Wood, 
National Severe Storms Laboratory, 120 David L. Boren 
Blvd. Norman, OK 73072.  E-mail: 
Vincent.Wood@noaa.gov 



 2 

tangential velocity transitions to a sharply-peaked 
profile.  As one progresses from the top panels through 
middle to the bottom panels of Fig. 1, a more rounded 
maximum tangential wind becomes increasingly 
localized with decreasing λ  around the radius at which 
the maximum occurs.  As 0→λ , three radial profiles 
for very different n  values merge together in each 
panel to form one superimposed radial profile at 1<ρ .   

 

 
 
Fig. 1.  Radial profile families of normalized tangential 

velocity ( ∗V ) for selected values of k , n  and λ  in 
each panel.  Three profile families in each panel are 
indicated by three different values of n . Gray curves 
represent the normalized Rankine tangential velocity 

( ∗
RVV ) for comparison.  Normalized radial distance is 

represented by xRr /=ρ .  (After Wood and White 

2011). 
  
 The model parameters ( k , n , λ ) do not change 

the magnitude at 1=∗V  and 1=ρ .  This effect is 

shown in Fig. 1. 
 Further insight into the relevant vortex dynamics is 
obtained by comparing the tangential wind profile of the 
WW vortex to that of the idealized Rankine (1882) 
vortex (RV).  Consider a normalized Rankine velocity 
profile, given by 
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where xRr /=ρ  has been defined previously, and γ  is 

the power-law exponent that governs the profiles inside, 
at and outside 1=ρ  (gray curves in Fig. 1).  After 

normalizing the tangential velocity ( xVVV /=∗ ) and 

setting 1=k  and 2=n  in (1), the WW vortex is 

transformed to the RV in the following procedure.  

Taking the limit of the result as 0→λ , ρ=→ ∗∗
RVVV  

for 1≤ρ .  This means that ∗V  approaches the inner 

core of solid-body rotation of the RV as one progresses 
from the top middle column to the bottom middle 
column (as indicated by black, solid curves in Fig. 1b 
through Fig. 1e to Fig. 1h).  Furthermore, as 0→λ , 

1−∗∗ =→ ρRVVV  for 1>ρ , indicative of the fact that 

∗V  decreases and tends asymptotically to the value 

given by potential flow in which 1−∗ ∝ ρV .  Hence, the 

WW vortex exactly coincides with the RV when 0→λ .  
The Rankine vortex may be viewed as a limiting case 
for the Wood-White vortex as 0→λ . 
 
3. PARAMETRIC VS. NUMERICAL MODELS 
 
 A key question that needs to be addressed here is:  
what is the rationale for developing the parametric 
tangential-wind profile model in this study?  We gain 
insight into this question by discussing the vast 
differences between the parametric and dynamical 
numerical vortex models.  As expected, the numerical 
model makes full use of the Navier-Stokes equations of 
motion, the continuity of motion and the known physical 
laws that altogether govern simulated vortices that 
evolve with time.  In order to provide reasonable 
numerical results for vortex simulations, the numerical 
model requires a high-resolution grid with properly 
defined boundary conditions.  This process is 
computationally expensive in terms of execution time 
and computer memory.  On the other hand, the 
parametric model calculates an approximation of the 
numerical vortex wind fields (such as radial profiles of 
tangential wind) only if the driving parameters are 
properly determined.  The parametric model offers an 
attractive alternative because the model improves 
execution-time costs and preserves most of the validity 
of the numerical results.  While it is true that the high-
resolution numerical model remains many investigators’ 
preference over the parametric model, the parametric 
model still provides an economical and equally good 
alternative for estimating vortex wind fields (or profiles) 
for different applications. 
 Numerous investigators often resort to using 
different parametric wind models for different 
applications.  In the tropical meteorology community, 
they used their parametric models to approximate the 
one- or two-dimensional wind structure within a tropical 
cyclone in practical applications (e.g., Phadke et. al 
2003; MacAfee and Pearson 2006; Jakobsen and 
Madsen 2004; Holland 1980, 2010; Willoughby and 
Rain 2004; Willoughby et. al 2006).  In the tornado 
research and engineering communities, Holland (2006) 
used a simple Rankine model and a modified tree 
model to simulate tornado damage in forests.  Wurman 
et. al (2007) simulated tornadic winds based on DOW 
(Doppler on Wheels) radar data to depict wind-induced 
loss to property. 
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 Can the WW parametric wind-profile model 
reproduce the tangential wind fields that a high-
resolution numerical vortex model generates?  This 
question will be answered in the next section. 
 
4. TESTING AND VERIFICATION 
 
 We desire to demonstrate the effectiveness and 
versatility of the WW model by testing and verifying the 
model.  One theoretical vortex solution of the time-
dependent Burgers (1948)-Rott (1958) (henceforth BR) 
model and one high-resolution numerical vortex model 
of Trapp (2000) were selected to represent evolving 
simulated vortices.  Interested readers are referred to 
Trapp (2000) for a more detailed discussion of his 
numerical model and results.  The analytical and 
numerical tangential speeds in the form of radial profiles 
radiating from the center of the vortex provide useful 
data and verify the WW model. 
 We use the Levenberg (1944)-Marquardt (1963) 
(LM) optimization method, a standard technique used to 
solve unconstrained nonlinear least squares problems 
for curve-fitting applications.  The LM method is actually 
a combination of two minimization methods – the 
gradient descent method and the Gauss-Newton 
method.  The LM method behaves more like a gradient-
descent method when the parameters are far from their 
optimal value.  When the parameters are close to their 
optimal value, the LM method behaves more like the 
Gauss-Newton method.  The method for implementing 
the LM algorithm is described in Press et al. (1992). 
 The LM algorithm is used to fit the WW parameters 

( T],,,,[ λnkRV xx=m ) to the radial profiles of observed 

(or numerical) tangential velocity output involving 
minimizing a cost function 
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Here, l

obsV  is the observed (or numerical) tangential 

velocity data at a given th
l  height level, ir  is the radial 

distance from the vortex center, and obsN  is the 

maximum number of gridded tangential velocity output 
per radial profile at that level.  The function accounting 
for the discrepancy between the model and numerical 
tangential velocity data is evaluated at each radial 
profile.  At the lowest height level ( 1=l ) of nonzero 
numerical (or analytical) tangential velocity data, the 
guessed values of xV  and xR  are easily determined by 

scanning one radial profile for the strongest reported 
tangential velocity and its radial position.  The guessed 
values of power-law exponents ( k ) and ( n ), 
respectively, are determined by reasonably examining 
the shape profile inside and outside xR  before making 

initial guess of λ .  Fig. 1 may be used as a guideline 
for estimating the model parameters ( k , n , and λ ).  
After having the model parameters ( k , n , and λ ) 

calculated and having available xV  and xR  as inputs to 

)(mJ , (3) is minimized by differentiating )(mJ  with 

respect to m , and so the rapidly-converging LM 
algorithm         
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If the iterative process fails to converge, fitting is 
abandoned.  When convergence is achieved, fitting is 
completed so that the last updated m  values are 
finalized.  Consequently, (1) is computed and stored in a 
one-dimensional array of fitted tangential velocity to be 
plotted as a function of radial distance and height.  The 
procedure for minimizing (3) at the next height level 
( 1+l ) is repeated after the updated m  values at the 
previous )(l  height level are assigned to the initial 

guesses ( m ) at that )1( +l  level.  The procedure is 

continued progressively to )1( +l  levels until it is 

terminated at the top domain of the numerical model. 
 We calculated the root-mean-square error ( RMSE ) 
and correlation coefficient ( CC ), respectively, given by, 
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where the sums extend over the obsN  analysis grid 

points for which both observed ( obs ) and fitted ( fit ) 

tangential velocity variables are available, and the 
overbar represents the sample means of each variable.  
The two indices in (5) and (6) will be applied to evaluate 
the accuracy of the fitted and observed tangential-wind 
profiles. 
  
4.1 The Unsteady Burgers-Rott Vortex Model  
 
 Rott (1958) found and Trapp and Davies-Jones 
(1997) and Davies-Jones and Wood (2006) used an 
exact unsteady vortex solution of the Navier-Stokes 
equations of motion and the incompressible continuity 
equation.  The flow parameters used to produce 
evolution of radial profiles of tangential wind of the time-
dependent BR vortex (Fig. 2) were described in Davies-
Jones and Wood (2006) for the purpose of testing and 
verifying the parametric tangential-wind profiles of the 
WW model. 
 In steady convergent flow, the unsteady BR vortex 
amplified but approached a steady state asymptotically 
as a balance was approached between the inward 
advection and outward diffusion of angular momentum 
(Fig. 2).  Comparisons of radial profiles of tangential 
velocity between the BR and WW models are presented 
in Tables 1 and 2.  The fitted wind parameters of xV  

and xR  are found to produce and agree with realistic 
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values of the analytical wind parameters [ )(tVx  and 

)(tRc ].  It is interesting to note that approximate 

potential flow outside the annulus of maximum 
tangential velocity (indicated by nk −  in Table 2) 
compares favorably with potential flow in the BR model. 
 

 
 
Fig. 2.  Evolution of radial profiles of (a) theoretical 
tangential velocity in the unsteady Burgers-Rott vortex 
and (b) fitted tangential velocity in the WW parametric 
vortex at t = 3, 7 and 10 min. 
 
TABLE 1. The calculated flow parameters 
[ )(tVx , )(tRc ] of the unsteady BR vortex model at t = 3, 

7 and 10 min for the purpose of comparing to the fitted 
model parameters of the WW model (see Table 2).  
Note that )(tVx  represents the unsteady tangential 

velocity peak; )(tRc  represents the core radius at 

which )(tVx  occurs.  These flow parameters are 

described in Davies-Jones and Wood (2006) 
 
Model Parameter t = 3 t = 7 t = 10 

)(tVx  (m s-1) 14 40 66 

)(tRc  (m) 412 141 87 

. 
 
TABLE 2.  Fitted model parameters of ( xV , xR , k , n , 

λ ) used to calculate the radial profiles of the fitted 
tangential velocity of the WW model are given for 
comparing to the radial profiles of the unsteady BR 
tangential velocity (see Table 1) at t = 3, 7 and 10 min.  
Root-mean-square errors (RMSE) and correlation 
coefficients (CC) are indicated. 
 
Model Parameter t = 3 t = 7 t = 10 

xV  (m s-1) 14 41 66 

xR  (m) 407 138 86 

k  0.901 0.884 0.873 
n  2.060 1.932 1.902 
λ  0.651 0.547 0.517 

nk −  -1.159 -1.048 -1.029 
RMSE (m s-1) 0.058 0.182 0.261 

CC 1.000 1.000 1.000 
 

 Overall, the comparisons suggest that the WW 
model does a good job of reproducing tangential wind 
distribution that well fit to the unsteady BR tangential 
wind profile.  In fact, the parametric model does 
approximate analytical data as closely as possible. 
 
4.2 Numerical model of Trapp (2000) 
 
 Figure 3 compares the vertical distributions of 
evolving numerical tangential wind fields to those 
reproduced by the WW model.  The fitted model 
parameters take on more than one value at different 
heights, as shown in the right panels of the figure.  
Some of the parameters, particularly k  and n , run 
roughly parallel to each other.  It should be mentioned 
that the vertical profiles of λ  remain unchanged above 
the normalized height of about 0.2.  Since the 
Levenberg-Marquardt method is designed to solve 
unconstrained nonlinear least squares problems for 
curve-fitting applications, the method does not use the 
constraints.  Without imposing a constraint on the λ  
parameter, the method causes the parameter to wander 
into physically unrealistic parts of the parameter space.  
A range of λ  needs to be constrained within 

100 ≤< λ .  Future work will concentrate on refining 
the fitting algorithm by incorporating strong constraints 
that prevent the model parameters from drifting into any 
part of the space.  In spite of the unconstraints in the LM 
method, dual inspections and comparisons of the 
tangential wind distributions between the numerical and 
parametric models suggest that the parametric model 
agrees reasonably well with the numerical model.  
Furthermore, the parametric model does a good job of 
calculating an approximation of the numerical vortex 
wind fields. 
 It is possible to construct a vertical distribution of 
tangential wind structure (e.g., Fig. 3) if the parameters 
varying with heights are accurately determined.  For 
example, the model parameters may be expressed 
analytically as a function of height such that 

)(zVV xx = , )(zRR xx = , )(zkk = , )(znn =  and 

)(zλλ = .  Knowledge of the vertical structure of the 

vortex is of great importance to engineers who express 
their interest in building sturdy residential and 
commercial structures that can withstand the damaging 
winds in tornadoes. 
 
5. CONCLUSIONS AND FUTURE PLAN 
 
 The Wood-White parametric model mainly 
designed to depict a realistic-looking tangential wind 
profile that could better fit a realistic vortex was 
presented.  The WW profile employed five key 
parameters:  maximum tangential wind, radius of 
maximum tangential wind, and three power-law 
exponents that shaped different portions of the velocity 
profile, including the region of the highest tangential 
wind that can be made either broad or sharply-peaked.  
The effectiveness and versatility of the parametric 
model were successfully tested and validated against 
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the theoretical vortex solution of the unsteady BR vortex 
model and one high-resolution numerical vortex model 
of Trapp (2000) that represented evolving simulated 
vortices.  Radial profiles of the parametric and 
numerical tangential wind profiles at each height were 
constructed to display a two-dimensional tangential 
wind structure in the cylindrical ( zr, ) model domain.  
Detailed comparisons between the parametric and 
numerical tangential wind profiles suggest that the WW 
model performed very well with low values of root-
mean-square errors and high values of correlation 
coefficients.  Hence, the capability of the WW model to 
reproduce the complex tangential wind fields has been 
examined. 
 

 
 
Fig. 3.  Plots of numerical tangential velocity of Trapp 
(2000) for the free-slip experiment at (a) t = 4.5 min and 
the no-slip experiment at (d) t = 4.5 min and (g) t = 6.0 
min.  Plots of fitted tangential velocity of the WW model 
for the free-slip experiment at (b) t = 4.5 min and the no-
slip experiment at (e) t = 4.5 min and (h) t = 6.0 min.  All 
contours are normalized with interval of 0.1.  
Dimensionless radial distances and heights, 

respectively, are normalized by Rrr /≡∗  and 

Hzz /≡∗ .  Vertical profiles of the fitted parameters 

( xV , k , n , λ ), RMSE and CC are indicated in the 

panels (c), (f) and (i).  Note that in these panels, the 
abscissa is logarithm to enhance readability.  Dashed 
curves represent the vertical profiles of the fitted xR  in 

panels (b), (e) and (h). 
 
 The WW parametric model offers a few potential 
applications.  One of them is analytical or model 
initialization that can be defined an initial condition of 
realistic-looking tangential velocity component varying 
radial distance and/or axial distance.  Dowell et al. 
(2005), for example, used the Rankine model and the 

Fiedler (1989, 1994) tangential-wind profile to imitate 
the Fiedler and Rankine vortices in their high-resolution 
numerical models.  They studied how one- and two-
dimensional distributions of particles motions and 
concentrations responded to evolving tornado-like 
vortex flows. 
 In the near future, application of the WW parametric 
model to any mobile or ground-based Doppler radar 
measurements including the dataset collected during 
the Second Verification of the Origins of Rotation in 
Tornadoes Experiment (VORTEX2) field program is 
planned. 
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