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1. INTRODUCTION

The last few decades have seen major breakthroughs
in the understanding of severe storms, resulting both
from improved modeling capabilities and observa-
tional field work. One remaining frontier is the tor-
nadic vortex, especially a quantitative understand-
ing of the lowest few hundred meters above the
ground. Researchers have published many articles
(e.g. Bluestein et al (2004), Bluestein et al (2007))
detailing observations of storm and tornado scale
features using moderate and fine scale resolution mo-
bile radars. However, mobile radar platforms have
failed to observe features near ground level that the-
oretical considerations imply should exist, such as
the corner flow and inflow regions of the tornado.
This work outlines a method of estimating wind
structures in the absence of data at low levels that
assumes a regular structure in the tangential com-
ponent of the tornado’s wind velocity field and sim-
plified dynamics for the wind fields, and shows the
results of tests in an observing system simulation
experiment (OSSE).

2. SIMPLIFIED DYNAMICS MODEL
EQUATIONS

Keeping operational considerations in mind, as well
as concerns of mathematical tractability, we opt for
a simplified set of equations. This is justified phys-
ically by the fact that in the lowest portion of the
tornado, it is likely that moisture and temperature
fields are much less important than the balance of
momentum and mass continuity. Denote by (u, v, w)
the radial, tangential, and vertical components of ve-
locity. As an initial approximation, we consider the
axisymmetric, steady form of the equations of mo-
tion in cylindrical coordinates centered at the vortex
center. The tangential momentum and mass conti-

nuity equations take the form

ζu− ηw = ν(ζr − ηz) (2.1)

1

r
(ru)r + wz = 0. (2.2)

Our goal here is to estimate v from radar data, and
then estimate u and w using these equations. The
domain on which we consider this problem is a rect-
angle in the r−z plane. The upper boundary of this
domain is the minimum observable height h, likely to
be a few hundred meters for mobile radar platforms,
and so data along this ”lid” can be taken as a bound-
ary condition. We will see that for points on the in-
terior of the domain, knowledge of the other bound-
ary conditions is unnecessary, as the top boundary’s
information propagates into the domain along char-
acteristic curves.

3. SOLUTION BY METHOD OF CHARAC-
TERISTICS

By solving (2.1) for u or w and substituting the re-
sult into (2.2), we end up with one of the following
two sets of characteristic equations
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= η (3.1)
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if we solve for u and

dr
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= η (3.4)
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= ζ (3.5)
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η

(3.6)
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if we solve for w. Note that the characteristic curves
(r(t), z(t)) are the same for both sets of equations.
This is useful, because it means that the relations
for u and w hold on the same ”time” scale. Here we
take our initial conditions to be the velocities on the
lid.

It is possible that ζ or η could be zero at values
of r or z inside Ω. When this happens, the charac-
teristic ordinary differential equations are singular.
However, if v is known, we can diagnose u (if ζ 6= 0)
or w (if η 6= 0) and then find the other component
from the mass continuity equation.

4. WOOD-WHITE MODEL

We take v(r, z) = vmaxφ(r)ψ(z), where φ is esti-
mated from data, and ψ is taken to model the tan-
gential wind fields below the observable height. The
functional form for φ (and ψ for the Davies-Jones
dataset) is given by

φ(r;n, k,R) =
nRn−krk

(n− k)Rn + krn
. (4.1)

Here n and k are shape parameters for the Woods-
White tangential velocity, and R is the radius of
maximum wind speed. This model is a smooth func-
tion that generalizes the Rankine vortex model

vrk(r) =

{
vmaxr/R r ≤ R
vmaxR/r r ≥ R (4.2)

that is commonly used in wind field estimation. It
shares a few properties with the Rankine vortex
model, namely that the velocity is equal to vmax at
r = R, the slope is positive for r < R and negative
for r > R. There is more flexibility in the shape,
which lends itself well to data fitting.

Note that

ζ(r, z) = vmax

(
1

r

d

dr
(rφ(r;n, k,R))

)
r

ψ(z),

and expanding
(
1
r
d
dr (rφ(r;n, k,R))

)
r
, we get

1

r

d

dr
(rφ(r;n, k,R)) =

nrk−1Rn−k

((n− k)Rn + krn)2
(4.3)(

(k2 − k(n− 1))rn + (n+ k2 − k(n− 1))Rn
)

implying ζ = 0 when r = 0 if k 6= 1. This forces
u(0, z) = ±∞ when k 6= 1. Thus, we will require
k = 1, which reduces the parameter space dimen-
sion by one.

5. CHARACTERISTIC METHOD WITH
WOOD-WHITE MODEL

Following Snow (1982), the vertical variation ψ(z) in
the tangential wind field in the lowest vertical levels
of the tornado can be modeled by the function (4.1),
with the same caveat about forcing k = 1, only this
time so that w will be finite at z = 0, and of course
choosing a different n parameter. Hence, let

v(r, z) = vmaxφ(r;nr, R)φ(z;nz, Z) (5.1)

ζ(r, z) = vmax
1

r

d

dr
(rφ(r;nr, R))φ(z;nz, Z) (5.2)

η(r, z) = −vmaxφ(r;nr, R)
d

dz
φ(z;nz, Z) (5.3)

In the next sections, I will detail how the character-
istic curves and solutions u and w behave with this
as our ansatz.

5.1 Characteristic Curves

From (3.1) and (3.2), we see that r follows the sign
of η and z follows the sign of ζ. This leads to a cou-
ple of immediate results. First, the vertical axis is a
characteristic curve because η = 0 when r = 0. Sim-
ilarly, the polar axis is also a characteristic curve.
Note that η is negative for z < Z and positive for
z > Z, while ζ is positive for r < Rζ and negative
for r > Rζ , where

Rζ =

(
2(n− 1)

n− 2

)1/n

R. (5.4)

This divides Ω into four regions, with the behavior
of the characteristic curves depending on which re-
gion the curve is passing through. Figure 1(a) is a
schematic drawing of the behavior of the characteris-
tic curves. The arrows are pointing in the direction
that the values of (r(t), z(t)) move as t increases.
The question of existence of unique solutions is au-
tomatically answered from these inequalities. We
know that the characteristic curves won’t cross,
because they’re the level curves of Γ = rv(r, z),
which is a continuously differentiable function on Ω.
Hence, if (r, z) is a point in Ω, there will be an r0 so
that the characteristic passing through (r0, h) also
passes through (r, z).
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5.2 Inviscid Case (ν = 0)

Examining the integrating factor solution of (3.3),
we can determine the regions of Ω where w is in-
creasing and decreasing. Initially, assume ν = 0, so
that the solution reduces to

w(t) = w(0) exp

(
−
∫ t

0

ζ

(
η

ζ

)
r

ds

)
. (5.5)

By writing out the integrand explicitly in terms of
the component models, we have

1

ζ
(ηrζ − ηζr) =

φz(z)
1
r (rφ(r))r

× (5.6)(
rφ(r)

(
1

r
(rφ(r))r

)
r

− φr(r)

r
(rφ(r))r

)
The quantity in parentheses is zero when

r = Rw :=R

(
nr − 1

2(nr − 2)

)1/nr

× (5.7)(
n2r − nr + 1± nr

√
n2r − 2nr + 8

)1/nr

The quantity after the ± is bigger than that in front,
so the second zero would be negative, and hence is
not of any interest to us. From the equation that we
used to derive the value Rw we find that the quan-
tity in parentheses in (5.6) is negative to the left
of Rw and positive to the right of Rw. We already
know where the other two factors in (5.6) change
sign. This leads to the sign chart in Figure 1(b),
and tells us where w is increasing and decreasing.

6. PROBABILISTIC ESTIMATION

For a set of observed values tangential winds, we can
define a cost functional by

J(~q) =
1

2

∑
obs

(vmaxφ(r; ~qr)ψ(z; ~qz)− v̂i)2 , (6.1)

where ~q = [vmax, ~qr, ~qz]. Following Tarantola (2005),
we can define a probability density function p(~q) over
the parameter space by

p(~q) = κe−J (6.2)

with κ chosen as a normalizing constant. From this
vantage point, we can view the optimal parameter
values which minimize J , i.e. the least-squares val-
ues of ~q as the maximum likelihood estimate (MLE)
for p. Taking into account the fact that our model

is a simplified version of reality, we can view sam-
pling p as accounting for uncertainties in the model
and the data. With some caveats, we can use p to
bring the ideas of information theory to bear on the
problem of estimating v. Further, the probabilistic
method of estimating v leads to distributions of u
and w, for which we can calculate statistics.

7. TESTS WITH DAVIES-JONES’ MODEL
OUTPUT

In Davies-Jones (2008), Davies-Jones describes an
unsteady axisymmetric storm- and tornado-scale
model, with the intention of determining the role
of precipitation in tornadogenesis. As a part of our
Observing System Simulation Experiment (OSSE),
we used a single snapshot (in time) from the out-
put of this model that produced a tornado cyclone
as data, with the goal of estimating the wind fields
near the ground.

7.1 Parameters

We sampled (6.2) with v of the form in (5.1), choos-
ing the parameters that have the largest likelihood,
which is the value of p at a chosen parameter vec-
tor for a particular set of data. We used various
values for the minimum observable height h, chosen
to agree with the vertical levels in the data. In the
model, Davies-Jones used a value of 0.0005 for ν, so
our inviscid special case described above is applica-
ble here.

7.2 Experiments

For these tests, I used the Davies-Jones model grid
as the points where I estimated the radial and ver-
tical velocities, for comparison with the true values
in an `2 sense. Figure 1 show the qualitative prop-
erties of the inviscid solution w from the proper-
ties of ζ and η in specified regions of the domain.
The simplest estimate would be the u and w coming
from the maximum likelihood estimate of v. An-
other estimate would be a sample conditional mean,
computed by sampling the pdf at the most likely
parameter vectors. These comparisons are shown in
Figure 2 and 3 for a minimum observable height of
462 meters. Table 1 and 2 show the objective error
values for four different minimum observable heights.
Note that while the contour plots look similar, there
is a striking difference in the objective error mea-
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surements, with the mean fields usually being more
accurate than the MLE fields.

7.3 Numerical Integration

The equations were integrated using various numeri-
cal methods, and showed little sensitivity to choice of
method for appropriate time step sizes. The results
shown use an implicit Euler method, chosen for its
simplicity and stability properties. Loosely speak-
ing, this method was the optimal one for balancing
integration time with accuracy. Higher order meth-
ods were explored, but did not seem to give enough
improvement to warrant the cost. The equations
were integrated on an eight-core Intel Power Mac.

7.4 Caveats

These experiments assume knowledge of all of the
wind components above the observable height h.
This is an unrealistic assumption, as we really only
measure a single Doppler velocity that contains al-
most no information about the vertical velocity. Es-
timating vertical velocities from radar measurements
is an active area of research. When I attempted to
use (2.1) to get the w initial condition from u, which
is physically more reasonable, the results were seri-
ously degraded. Any attempt to move forward from
here will have to include a more realistic method
of estimating w from the two horizontal wind com-
ponents, in order to give initial conditions for the
characteristic equations.

Another physical issue is the meaning of the con-
stant ν. Steady flow will be much less sensitive to

this constant than if we allowed unsteady flow, where
ν would govern removal of energy from the system
by turbulent or diffusive processes. A more realistic
problem will have to provide some estimate for ν,
and may need to provide for the possibility that ν
won’t be spatially constant, but rather flow depen-
dent.
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Root Mean Square Error
h MLE U Mean U MLE W Mean W

294 5.74 4.23 2.73 2.56
462 6.43 4.12 3.77 3.77
630 6.50 4.11 3.84 5.23
798 9.26 4.56 5.09 3.53

Table 1: Root Mean Square errors in estimates of the radial and vertical wind components as functions of
the minimum observable height h.

Maximum Absolute Error
h MLE U Mean U MLE W Mean W

294 12.64 10.24 6.05 5.09
462 14.34 9.75 8.56 8.43
630 14.14 8.82 9.14 15.43
798 18.40 10.42 11.60 8.20

Table 2: Maximum errors in estimates of the radial and vertical wind components as functions of the
minimum observable height h.
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(a) Schematic of Characteristic Curves
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(b) Sign of dw
dt

with ν = 0

Figure 1: (a) Characteristic curve schematic and (b) Sign of dw
dt with ν = 0 associated to the tangential

velocity v = vmaxφ(r)φ(z)
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Figure 2: Comparison of Sample Mean and MLE estimates for u with Davies-Jones u, when h = 462m.
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Figure 3: Comparison of Sample Mean and MLE estimates for u with Davies-Jones u, when h = 462m.
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