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1.  INTRODUCTION

This study is a first step toward 
understanding the impacts and importance of the 
sources of uncertainties in model physics, model 
dynamics, and initial and lateral boundary conditions
(IC/LBC) for convection-allowing ensemble forecasts.
Some of the key issues for future study of optimal 
ensemble design and post-processing are inferred 
through a Hierarchical Cluster Analysis (HCA) of a 20-
member convection allowing ensemble from the 2009 
Hazardous Weather Testbed (HWT) Spring 
Experiment (Xue et al 2009). Non-precipitation 
variables (10m Wind Speed and 500hPa 
Temperature) are clustered using Ward’s minimum 
variance algorithm (Ward 1963) and hourly 
accumulated precipitation is clustered using a new 
object-oriented form of Ward’s algorithm.

Ward’s algorithm is traditionally based on 
Euclidean distance which often does not agree with 
subjective evaluation of convection-allowing 
precipitation forecasts (Baldwin et al 2001). 
Precipitation forecasts are therefore evaluated using 
the object-oriented Method for Object-based 
Diagnostic Evaluation (MODE; Davis et al 2006). 
MODE is used to compute an Object-based Threat 
Score (OTS) that is defined, discussed, and 
compared to a Neighborhood-based Euclidean 
Distance (NED) in the present study. It is found that 
OTS is a more effective distance measure for the 
HCA than NED and that OTS is more effective when 
forecast objects have a fuzzy degree of similarity 
rather than a binary classification as matching or not 
matching. Therefore “Fuzzy” OTS is used to create 
dendrograms composited over multiple forecasts in 
order to better understand the systematic clustering of 
explicit forecasts of convection.
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The design of the CAPS ensemble that is 
analyzed in this study is summarized in Table 1. The 
control members used initial conditions from the 
operational NCEP NAM analysis with additional radar 
observations, along with mesoscale wind and 
temperature observations, assimilated using ARPS 
3DVAR and cloud analysis (Hu and Xue 2007).  One 
member from each of the three models (ARW C0, 
NMM C0, and ARPS C0) used identical configuration 
to the control member with the same model (ARW 
CN, NMMCN and ARPS CN respectively) except 
without radar and mesoscale data assimilation. Initial 
condition perturbations were generated by taking the 
control analysis as a base state and adding only the 
perturbations from the NCEP SREF members 
indicated in Table 1. Perturbed LBCs were taken 
directly from the SREF member forecasts, while 
control member LBCs were taken directly from NCEP 
NAM forecasts. A more thorough description of the 
Spring Experiment and the CAPS ensemble design is 
found in Xue et al (2009).

The goal of this study is to infer the issues 
related to ensemble design that require further
research in order to optimally design useful 
ensembles for the explicit prediction of convective-
scale phenomena such as severe storms. It is found 
that object-oriented precipitation forecasts cluster 
primarily by model dynamics at all forecast times, with 
secondary sub-clusters corresponding to
microphysics scheme at 3hr forecast time (valid 
03UTC) and, for NMM members, according to 
Planetary Boundary Layer (PBL) scheme at 24hr 
forecast time (valid 00UTC). 10m Wind speed 
forecasts initially cluster primarily by PBL scheme at 
3hr forecast time (valid 03UTC) then cluster by
IC/LBC perturbations at 24hr forecast time (valid 
00UTC). Temperature forecasts at 500hPa cluster 
according to IC/LBC at all times. Many of the results 
of this study indicate that optimal ensemble design 
strategies can vary depending on several factors,
including forecast lead time and time of day, variables
of interest, and modeling system(s) or configuration(s) 
used in the ensemble.
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Member IC LBC R MP PBL SW LSM
ARW CN ARPSa NAMf Y Thom. (@) MYJ (^) Goddard Noah
ARW C0 NAMa NAMf N Thom. (@) MYJ (^) Goddard Noah
ARW N1 CN – em em N1 Y Ferr. ($) YSU (&) Goddard Noah
ARW N2 CN – nmm nmm N1 Y Thom. (@) MYJ (^) Dudhia RUC
ARW N3 CN - etaKF etaKF N1 Y Thom. (@) YSU (&) Dudhia Noah
ARW N4 CN - etaBMJ etaBMJ N1 Y WSM6 (#) MYJ (^) Goddard Noah
ARW P1 CN + em em P1 Y WSM6 (#) MYJ (^) Dudhia Noah
ARW P2 CN + nmm nmm P1 Y WSM6 (#) YSU (&) Dudhia Noah
ARW P3 CN + etaKF etaKF P1 Y Ferr. ($) MYJ (^) Dudhia Noah
ARW P4 CN + etaBMJ etaBMJ P1 Y Thom. (@) YSU (&) Goddard RUC
NMM CN ARPSa NAMf Y Ferr. ($) MYJ (^) GFDL Noah
NMM C0 NAMa NAMf N Ferr. ($) MYJ (^) GFDL Noah
NMM N2 CN - nmm nmm N1 Y Ferr. ($) YSU (&) Dudhia Noah
NMM N3 CN - etaKF etaKF N1 Y WSM6 (#) YSU (&) Dudhia Noah
NMM N4 CN - etaBMJ etaBMJ N1 Y WSM6 (#) MYJ (^) Dudhia RUC
NMM P1 CN + em em P1 Y WSM6 (#) MYJ (^) GFDL RUC
NMM P2 CN + nmm nmm P1 Y Thom. (@) YSU (&) GFDL RUC
NMM P4 CN + etaBMJ etaBMJ P1 Y Ferr. ($) YSU (&) Dudhia RUC
ARPS CN ARPSa NAMf Y Lin TKE 2-layer Noah
ARPS C0 NAMa NAMf n Lin TKE 2-layer Noah

Table 1: Details of ensemble configuration, modified from Xue et al (2009), showing the IC/LBC source, whether 
radar data is assimilated (R), and which microphysics scheme (MP), planetary boundary layer scheme (PBL), 
shortwave radiation scheme (SW), and land surface model (LSM) was used with each member. Symbols identifying 
MP and PBL schemes in other figures are also included. Perturbations added to CN members and LBC conditions 
are from NCEP SREF (Du et al 2006).

Attribute Weight Confidence
Centroid Distance 2.0 AR
Area Ratio 2.0 1.0 if CD ≤ 160 km 

1 – [(CD – 160) / 640] if 160 km < CD < 800 km 
0.0 if CD ≥ 800 km

Aspect Ratio Difference 1.0 CDI * AR
Orientation Angle Difference 1.0 CDI * AR * 

Where a,b are for the two objects being compared

Table 2: Attributes and parameter values used for MODE fuzzy matching algorithm. (CD denotes Centoid Distance, 
CDI denotes Centroid Distance Interest, AR denotes Area Ratio, T denotes aspect ratio)

2. OBJECT-ORIENTED CLUSTER ANALYSIS

HCA iteratively merges N clusters of 1 
forecast each into 1 cluster of N forecasts, where N is 
the number of forecasts being clustered. This study 
uses Ward’s algorithm to determine which two 
clusters to merge next. Ward’s algorithm merges the 
two clusters which result in the smallest increase of
total within cluster Error Sum of Squares (ESS) (Ward 
1963). Ward’s algorithm is modified for use with 
convection-allowing precipitation forecasts by 
replacing squared Euclidean distance with an object-

oriented measure of distance and replacing ESS with 
an object-oriented measure of variability as the 
objective function to be minimized at each step. HCA 
results are illustrated with dendrograms (Alhamed et 
al 2002) showing the entire sequence of cluster 
merging.
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2.1 Object-Oriented Distance

In this study, the distance between forecasts is 
calculated using a new measure, OTS, which is 
based on total interest, I, between forecast objects. 
Total interest is a weighted sum of the interest values 
for each of M object attributes (Davis et al 2009):
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Where c is the confidence in an attribute, w is the 
weight assigned to an attribute, and F is the interest 
value of the ith attribute for the jth pair of objects. The 
user of MODE must choose several parameters and 
those most relevant to the present study are 
illustrated in Table 2, and Figure 1.  It should also be 
noted that a different convolved threshold is used for 
each ensemble member so the average total area of 
all objects forecast by a given member is within 5% of 
the average total area of observed objects. These 
thresholds are intended to minimize the impact of 
systematic forecast bias.

The attributes in Table 2 are selected to 
quantify location (centroid distance), organization 
(area), and structure (aspect ratio and orientation 
angle) of intense rainfall. Confidence for angle 
difference follows Davis et al (2009) to give less 
weight to angle difference of circular objects, while 
angle difference and aspect ratio confidence is the 
product of area ratio (AR) and centroid distance 
interest (CDI). Thus the effective weights become half 
location and half size for objects that are far apart or 
very different in area and become one third location, 
one third size, and one third structure for objects of 
similar size in similar locations. This is because as 
size or location becomes less similar there is less 
confidence that the objects represent the same 
feature so it is less relevant whether they have similar 
structure. The confidence value for area ratio is a 
function of centroid distance (CD) so that objects that 
are extremely far apart (i.e. CDI of 0.0) but happen to 
have similar size (i.e. AR about 1) have a near zero 
interest (rather than 0.5) since those objects do not 
correspond to each other.

Figure 1 maps differences in object attributes 
to a fuzzy interest value. Approximate, rather than 
precise, location is emphasized by assigning objects 
with up to 40 km centroid distance an interest value of 
1.0. A linear form of all interest functions is chosen for 
simplicity in lieu of established guidelines otherwise. 

The x-intercepts in Figures 1c and 1d are selected to 
be consistent with subjective evaluations of how well 
the total interest described the degree of similarity 
over a large number of different object pairs.

OTS is then calculated between forecast i and 
forecast j as: 
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Where A is the total area of all objects in the 

forecast, N is the number of objects in the forecast, a
is the area of the kth object in the forecast, and I is the 
fuzzy value of total interest between the kth object and 
its corresponding object in the other forecast. The 
corresponding object is the object with highest total 
interest that doesn’t already correspond to a different 
object with higher total interest. Thus each object in 
one forecast corresponds to exactly one object (at 
most) in another forecast and the correspondence is 
the same in reverse.

If w in eqn (2) were replaced with a binary 1 
or 0 depending on whether its corresponding object 
has total interest above a specified matching 
threshold, then OTS becomes the Area Weighted 
Critical Success Index (AWCSI; Weiss et al 2009, 
also fraction of area in matched objects; Davis et al 
2009). Some differences between (fuzzy) OTS and 
AWCSI (i.e. binary OTS) are discussed further below.
When used as a distance measure OTS is first 
subtracted from 1.

2.2 Object-Oriented Variability

Ward’s algorithm is modified by defining the 
distance between clusters as the increase in a new 
measure of cluster variability, rather than ESS, that 
would result from a merge of those clusters.
Variability is defined as the average distance, d,
between all pairs of forecasts in the cluster, multiplied 
by N-1 where N is the number of forecasts in the 
cluster:
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When squared Euclidean distance is the distance 
measure, d, variability is equal to ESS and the 
modified Ward’s algorithm is equivalent to the 
traditional Ward’s algorithm.
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Figure 1: Functions mapping attribute value to interest 
value for (a) area ratio, (b) centroid distance, (c) 
aspect ratio difference, and (d) angle difference.

                              .                       

Variability, as defined here, is intended to 
provide an automated comparison of spread in 
different groups of forecasts in a way that mimics how 
a subjective analyst would compare them manually. In
this way it is consistent with the intended use of 
MODE as a way to mimic a subjective analysis (Davis 
2009). For example, consider three clusters of three
members in Figure 2 from a case study of forecasts 
valid 00 UTC 14 May 2009. The cluster in column (a) 
subjectively appears to have a lot of spread since it 
includes forecasts both with and without an object in 
east-central IL while the forecasts in MO range from a 
single linear object, to several small objects, to 
nothing at all. The cluster in column (b) has less 
spread because all the forecasts have a large rain 
area although they have large differences in 
placement. The cluster in column (c) has the least
spread because they all forecast a large rain area in 
northern IL and have similar placement and structure 
of objects in MO. This subjective comparison is also 
reflected in the variability for columns (a), (b) and (c) 
of 1.36, 1.11, and 0.66 respectively. Most other cases 
that were subjectively examined exhibited the same 
correspondence between variability and subjective 
impressions of spread.

Figure 2: Object-oriented variability for clusters of forecasts valid 00 UTC 14 May 2009 including (a) 
members NMM N4, NMM P1, and ARW N2, (b) members ARW P3, ARPS C0, and NMM P2, and 
(c) NMM N3, NMM P4, and ARW P2. 



5

2.3 OTS vs. NED

Clusters created using fuzzy OTS as the 
distance measure (i.e. 1-OTS) with the modified 
Ward’s algorithm are compared to clusters created 
using Euclidean Distance of Neighborhood probability 
forecasts with traditional Ward’s algorithm (NED). 
Neighborhood probability is defined as the percentage 
of grid points within a search radius that exceed a 
threshold of interest (Theis et al 2005). Clusters 
created using fuzzy OTS agree with subjective 
analysis more than clusters created using NED on 
several case study days (not shown) for two main 
reasons: OTS accounts for forecast features that are 
more closely related to convective mode and 
organization and OTS is not as sensitive as NED to 
overall forecast precipitation amount because OTS 
does not suffer from the “double penalty”. Even 
though the neighborhood ED relaxes the strict spatial 
accuracy required of traditional ED, NED is still 
unable to properly account for similar forecast 
features at different locations. This is demonstrated 
with a brief case study of a severe weather event on 
13 May 2009 (Figs. 3 through 5).

In terms of convective mode, organization,
and coverage the NMM CN and NMM C0 forecasts 
subjectively appear more similar to each other than to 
the ARW P1 forecast. This is because NMM CN and 
NMM C0 both show a cluster of cells of intense 
precipitation near the MO/IL border, with a line of 
smaller and generally weaker cells extending 
southwestward to the OK/KS border. In contrast, 
ARW P1 shows just one strong cell in central IL with 
much weaker showers elsewhere (Fig. 3).

The NED dendrogram (Fig. 3) indicates that 
NMM CN is more similar to ARW P1 than to NMM C0. 
A relative lack of intense precipitation in ARW P1, 
combined with the largest maximum in ARW P1 being 
precisely co-located with a maximum in NMM CN, 
decreases NED compared to other members. At the 
same time, the NED from NMM CN to NMM C0 is 
penalized once because NMM C0 forecast maxima 
are at grid points without maxima in NMM CN and is 
penalized again because NMM C0 has no maxima at 
the grid points where NMM CN does have maxima. 
This is the essence of the double penalty.

The OTS dendrogram (Fig. 5) indicates 
NMM CN and NMM C0 forecasts are particularly 
similar relative to the other forecasts. This clustering 
is caused by the similarity of the main forecast 
features in terms of approximate location, total area, 
aspect ratio, and orientation angle. These attributes 
are also more likely to influence the subjective 
interpretation of severe weather forecasters interested 

in convective mode and organization than a 
Euclidean-based distance. 

Another reason that OTS is preferred over 
NED as a distance measure for this cluster analysis is 
that NED is very sensitive to the overall precipitation 
amount. For example, Figure 3 indicates that ARW 
N2 and NMM P1 are the two most similar forecasts on 
this case. However, these two forecasts actually have 
different looking storms in completely different 
locations (Fig. 4). These members simply have in 
common an overall lower amount of precipitation than 
the other forecasts which results in a small Euclidean 
distance between them. This is also related to a 
reduced impact of the double penalty. 

2.4 Binary vs. Fuzzy OTS

Fuzzy OTS has two main advantages over 
binary OTS, both of which result from the lack of a 
matching threshold in the fuzzy context.

The first advantage of fuzzy OTS, relative to 
binary OTS, is an increase in self-consistency of the 
distances among a large group of forecasts. Binary 
OTS does not change as large objects get 
incrementally less similar until the threshold is 
reached and a sudden large change in distance 
occurs. The result is that sometimes a large 
subjective difference between forecasts has little 
impact on binary OTS while other times a small 
subjective difference between forecasts has a very 
large impact on binary OTS. In contrast, fuzzy OTS 
changes continuously as forecasts get incrementally 
less similar.

The second advantage of fuzzy OTS is that it 
is conceptually more robust since it can discriminate 
matches that are very good from matches that are not 
as good. In contrast, binary OTS will give 2 forecasts 
(A and B) an equal distance to a third forecast (C) if 
the same objects in A and B match the same objects 
in C. This is true even if the objects in A are 
subjectively much more similar to the objects in C 
than are the objects in B. This limitation of binary OTS 
cannot be avoided by raising the matching threshold 
because then the limitation would be that all 
unmatched objects are treated equally.

3.  CLUSTER ANALYSIS OF COMPOSITE 
DENDROGRAMS

Fuzzy OTS distance is used to examine 
systematic clustering of ensemble member forecasts 
of precipitation at forecast times of 3 and 24 hours, 
valid 03UTC and 00UTC respectively. Systematic 
clustering of 10m wind speed and 500hPa 
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Figure 3:  Dendrogram resulting from clustering the forecasts of hourly accumulated precipitation 
valid at 00UTC 14 May 2009, using NED as the distance measure. Also shown are the raw 
forecasts from NMM CN, NMM C0 and ARW P1 members.

Figure 4: Raw forecasts valid 00UTC 14 May 2009 from ARW N2 and NMM P1 members for 
comparison to Figure 3.
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Figure 5: Dendrogram resulting from clustering the forecasts of hourly accumulated precipitation 
valid at 00UTC 14 May 2009, using fuzzy OTS as the distance measure. Also shown are the 
MODE objects from NMM CN and NMM C0 members

temperature forecasts are also examined at the same 
forecast times using traditional Ward’s method. The 
systematic clustering is examined by defining a 
composite distance between members as the average 
normalized distance between those members over all 
cases. The normalized distance is defined as the 
distance minus the largest distance between any pair 
in each case, divided by the range of distances on 
that case.

3.1 Hourly Accumulated Precipitation

The composite dendrogram at 3hr lead time 
(valid 03UTC; Fig. 6a) shows that the primary 
distinction among members is based on the 
assimilation of radar and mesoscale data. The 
remaining members form two clusters according to 
WRF model dynamics while ARPS CN is included in 
the ARW cluster. These primary clusters of model 
dynamics contain sub-clusters that are entirely 
determined by the microphysics scheme for both 
ARW and NMM.

The composite dendrogram at 24hr lead time 
(valid 00UTC; Fig 6b) also contains three primary 
clusters of members with common model dynamics 
(ARW, NMM and ARPS). The NMM cluster has two 
sub-clusters, one containing all the NMM members 
with MYJ PBL scheme and another containing all the 
NMM members with YSU PBL scheme. Unlike the 

NMM cluster, the ARW cluster does not have sub-
clusters with a common PBL scheme. 

3.2 Wind Speed at 10m

Wind speed forecasts at 10m are sensitive to 
PBL scheme, model dynamics, and IC/LBC 
perturbation, depending on the lead time and PBL 
scheme (Fig. 7). At 3 hr lead time (valid 03UTC) the 
10m wind speed forecasts with YSU and MYJ PBL 
schemes form separate clusters, with an additional 
cluster of C0 and ARPS members (Fig. 7a). The MYJ 
cluster forms sub-clusters with common model even 
though some members with different models have the 
same IC/LBC. In contrast, the YSU cluster has two 
pairs of members with common IC/LBC but different 
model. By 24 hr lead time (valid 00UTC) the primary 
clustering corresponds to the members with IC/LBC 
perturbations from SREF members with common 
model dynamics (see Table 1 for SREF models).
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Figure 6: Dendrograms composited over 26 days 
using fuzzy OTS as distance measure between hourly 
accumulated precipitation forecasts at (a) 3 hour lead 
time valid 03UTC and (b) 24 hour lead time valid 
00UTC. Labels are defined in Table 1.

Clustering of 10m wind speed forecasts 
based on PBL scheme at 3hr (valid 03UTC) was also 
seen on most individual cases but each case had a 
different, seemingly unrelated, explanation. This is 
probably because there are many types of flow where 
10m wind speed depends largely on whether a local 
(MYJ) or non-local (YSU) PBL scheme is used, 
however detailed analysis of the difference is left for 
future work. The increasing influence of the large 
scale perturbations with increasing forecast time is 
caused by common LBC forcing propagating into the 
verification domain as well as the growth of shared 
initial perturbations within the verification domain. The 
clustering based on SREF model is due to differences 
in the forecasts from different SREF configurations 
and is discussed further in the next section.

3.3 Temperature at 500hPa

The composite dendrograms of 500hPa 
temperature are representative of the clustering of 
850hPa variables (wind speed and temperature; not
shown). These middle-tropospheric variables tend to 
cluster based on IC/LBC perturbations at all lead 
times (Fig. 8). By the 24 hr lead time (valid 00UTC) 
there is even stronger primary clustering of middle-
tropospheric variables based on the SREF model 
used for IC/LBCs than 10m wind speed. Unlike 10m 
wind speed, Figure 8 shows all members using NAM 
SREF in the same cluster and the members using Eta 
SREF are separated according to EtaKF and EtaBMJ. 
Within these primary clusters every pair of members 
with the same IC/LBC are also paired together, as 
indicated in Figure 8b.

The primary clustering of non-precipitation 
variables by 24 hr lead time is the result of using 
SREF member forecasts, including both perturbations 
and base state, as LBCs. There is a tendency for the 
base states of SREF members with common model 
dynamics and physics to have differences that are 
much greater than their flow perturbations. The large 
spatial scale and amplitude of the LBC perturbations 
eventually dominates the clustering as they move into 
the verification domain.
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Figure 7: Dendrograms composited over 28 days
using ED as distance measure between 10m wind 
speed forecasts at (a) 3 hour lead time(valid 03UTC)
and (b) 24 hour lead time (valid 00UTC). Labels are 
defined in Table 1.

4. DISCUSSION

An Object-oriented clustering technique 
using a modified version of Ward’s algorithm is an 
effective method of identifying clusters within a 
convection-allowing ensemble of precipitation 
forecasts. When composited over multiple cases 24 
hour precipitation forecasts, valid 00UTC, cluster 
primarily by model dynamics with secondary sub-
clusters of the NMM members with common PBL 
scheme.  Three hour precipitation forecasts, valid 
03UTC, also cluster primarily by model but sub-
clusters have common microphysics scheme for both 
WRF cores. The different sub-clusters in NMM and 
ARW members at 24 hour lead time indicates the 
relative impact of some perturbations can depend on 
interactions with other aspects of the ensemble 
design, an inference also supported by composite 
clusters of 10m wind speed forecasts at 3 hour lead 
time.

In general, the results depend on the 
variable and lead time of interest, as well as the 
ensemble configuration. 10m wind speed forecasts at 
3 hour lead time, valid 03UTC, cluster primarily by 
PBL scheme and secondarily by model for MYJ 
members and secondarily by IC/LBC for YSU 
members. At 24 hour lead time, valid 00UTC, 10m 
wind speed forecasts cluster primarily by IC/LBC, with 
a clear influence of the configuration of the SREF 
ensemble used for LBCs. Upper level variables 
cluster primarily by IC/LBC at all lead times and 
eventually by the SREF configuration at later lead 
times. For all variables considered in this study there 
was an impact of radar and mesoscale data 
assimilation through the 12 hour forecast time valid at 
12 UTC.

The dependence of the results on multiple 
factors implies that optimal perturbation strategies are 
likely to depend on the intended use of the forecasts. 
The results presented here imply that when designing 
a convection-allowing EPS for 24 hr forecasts of 
intense convection particular attention should be paid 
to model dynamics and PBL scheme perturbations. 
Users interested in short term forecasts of near 
surface variables may find greatest improvements to 
ensemble design by optimizing physics and model 
perturbations while users interested in longer term 
forecasts or higher level variables may benefit from 
an increased emphasis on IC/LBC perturbations. 
However, even for a specific user there may not be a 
single optimal perturbation strategy that applies to all 
modeling systems for all flow regimes. 
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Figure 8: Dendrograms composited over 28 days 
using ED as distance measure between 500hPa 
temperature forecasts at (a) 3 hour lead time and (b) 
24 hour lead time. Labels are defined in Table 1.
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