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1. Introduction 
 
 Many studies have been performed during the past 
decade aiming to use Doppler radar data for initializing 
cloud-resolving models. At the Center for Analysis and 
Prediction of Storms (CAPS), the ARPS Data Analysis 
System (ADAS, Brewster 2003a, b), with incremental 
analysis updating capabilities, was developed as the 
first step towards assimilating radar data and other 
conventional and remotely-sensed data into a 
nonhydrostatic NWP model, the ARPS (Xue et al. 
2000; 2001). A limitation of ADAS is that observations 
that differ from the analysis variables cannot be 
directly analyzed and are handled only by generation of 
pseudo-observations (e.g., via single-Doppler velocity 
retrievals; Weygandt et al. 2002a, b). Examples of such 
observations include radar radial velocity and 
reflectivity, GPS precipitable water, and satellite 
radiances. All of these data are very important to 
storm-scale data assimilation. To more effectively use 
these data, advanced DA techniques, including 
variational and ensemble Kalman filter methods are 
needed. 
 In the context of large-scale hydrostatic flows, the 
3DVAR method of analysis has reached a considerable 
state of maturity at operational NWP centers (Derber et 
al. 1991; Parrish and Derber 1992; Andersson et al. 
1998; Courtier et al. 1998; Rabier et al. 1998; Wu et al. 
2002, Barker et al. 2004). Non-conventional data, 
including those from satellite and radar, can be directly 
analyzed by 3DVAR. In current operational 3DVAR 
systems, analysis increments are often divided into 
balanced and unbalanced parts, with the balanced parts 
often linked together via statistically derived balance 
relations. For example, in the NCEP system (e.g., Wu 
et al. 2002, Purser et al. 2003a, b), the temperature 
increment is a sum of the unbalanced and balanced 
parts, with the latter computed from the stream-  
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function increment via a balance operator reflecting 

geostrophy. This balance operator is a linear regression 
derived from historical data. Unfortunately, because 
such regressions are mainly consistent with geostrophy 
and the hydrostatic relationship, they are not entirely 
appropriate for storm-scale data assimilation. 
Furthermore, the background error covariances derived 
from the commonly used NMC method (Parrish and 
Derber 1992) usually do not reflect local weather 
situations that are highly intermittent in space and time. 
For these reasons, large-scale 3DVAR schemes cannot 
be directly extended to the meso- and convective scale 
nonhydrostatic flows.  
 A 3DVAR method, which uses mass continuity 
equations and other appropriate model equations as 
weak constraints, has been proposed and developed in 
recent years (Gao et al. 2004; Ge and Gao 2007). This 
method is mainly designed to assimilate radar data into 
convective scale nonhydrostatic flows (Hu et al. 2006, 
2007; Ge et al. 2010; Stensrud and Gao 2010). It has 
been used to perform realtime 4-km multi-model 
convection-allowing ensemble and 1-km convection-
resolving deterministic forecasts for the NOAA 
Hazardous Weather Testbed (HWT)’s Spring 
experiments since 2008 (Xue et al. 2008; Kong et al. 
2009). The unique feature of these experiments is that 
Level-II radial velocity and reflectivity data from over 
120 operational WSR-88D radars are analyzed using 
the ARPS 3DVAR program. The analyses serve as the 
control initial conditions onto which perturbations are 
added for ensemble runs. The use of more appropriate 
equation constraints couples different model variables, 
e.g., the three components of wind field.  Xiao et al. 
(2005) used a 3DVAR method developed for WRF 
model to assimilate Doppler radar observation into 
WRF model. However, the truly flow-dependent 
background error covariances were also not included in 
the WRF 3DVAR system which was mainly designed 
for large mesoscale system.  

Compared to 3DVAR, the more advanced 4DVAR 
technique incorporates the full prediction model into 
the assimilation system and implicitly includes the 
effects of flow-dependent error covariances through 
involvement of the forward model and backward 
model. In recent years, the 4DVAR technique has 
enjoyed significant success at several operational NWP 
centers, including ECMWF, Meteo-France, 
Meteorological Service of Canada, and Japan 
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Meteorological Agency (JMA), mainly in global NWP 
systems (Rabier et al. 2005). Some research has also 
been done with storm-scale radar data assimilation 
using the 4DVAR method, notably by Sun and Crook 
at NCAR (1997, 1998, 2001, 2005). Despite some 
encouraging results, 4DVAR for convective-scale 
applications has been limited to simple microphysics in 
almost all cases because the strong nonlinearity is 
difficult to handle in the minimization process. Honda 
and Koizumi (2006) recently reported difficulties, 
including slow convergence, when including complex 
ice microphysics within the inner loop of their 4DVAR 
system for a nonhydrostatic model at JMA. The high 
computational cost of 4DVAR is another hindrance for 
high-resolution NWP over large domains though this 
can be alleviated with the increasing power of new 
generations of computers.  

The ensemble Kalman filter (EnKF) is an 
emerging advanced data assimilation method that 
shares many of the advantages of 4DVAR but appears 
to be less sensitive to nonlinearity. It has gained 
considerable popularity in recent years in meteorology 
and oceanography since first proposed by Evensen 
(1994). The method estimates flow-dependent 
background error covariance from an ensemble of 
nonlinear model forecasts, which is much cheaper than 
trying to integrate the prediction equation for the error 
covariance as in the classical or extended Kalman 
filter. Many studies have since appeared that explore 
new EnKF variations and the performance of these 
methods for various applications (Bishop et al. 2001; 
Burgers et al. 1998; Hamill and Synder 2000; 
Houtekamer and Mitchell 1998; Whitaker and Hamill 
2002).  

For convective storms, very encouraging results 
have been obtained in recent studies using the 
ensemble Kalman filter method in analyzing wind, 
temperature, moisture fields and even microphysics 
variables from radar data for convective storms 
(Snyder and Zhang 2003; Zhang et al. 2004; Tong and 
Xue 2005; Alkoy et al. 2009; Dowell et al. 2004, 2010; 
Yussouf and Stensrud 2010). One of the advantages of 
the EnKF method over variational methods is that it 
can dynamically evolve the background error 
covariances throughout the assimilation cycles. 
However, for the storm scale, the overall computational 
cost of ensemble-based assimilation methods is quite 
significant because of the need for running an 
ensemble of forecasts and analyses of nontrivial sizes 
(usually a few dozen to a few hundred), especially 
when high-density radar data are involved and when 
the ensemble of all forecasts is run at high resolution 
over a big domain. One of the major sources of errors 
with ensemble-based DA is rank deficiency or 
sampling error as a result of relatively small ensemble 
sizes. This problem may be even more severe with 

storm-scale data assimilation because the total degrees 
of freedom of the system may be significantly larger 
than the practical ensemble size. The commonly 
utilized remedy to the rank deficiency problem is 
covariance localization by a Schur product introduced 
by Houtekamer and Mitchell (2001). This solution, 
however, prevents the use of distant correlations that 
are physically meaningful. Further, the modification to 
the spatial covariances within a cut-off radius by a 
Schur product also introduces imbalances, and the 
effect is more substantial when the localization is more 
restrictive (Mitchell et al. 2002). A larger ensemble 
helps improve the background error covariance 
estimation, but increases the computational cost. To 
alleviate the above problems, Gao and Xue (2008) 
proposed a dual-resolution (DR) EnKF data 
assimilation strategy in which an ensemble of forecasts 
is run at lower resolution (LR) to provide the 
background error covariance estimation for both an 
ensemble of LR analyses and a single Higher 
Resolution (HR) analysis. The DR strategy has two 
benefits. One is that the computational cost of the 
overall EnKF analysis can be greatly decreased. The 
second is that the problem of rank deficiency, or 
sampling error, can be reduced by increasing the 
ensemble size because of the low cost of LR runs.  

As discussed above, the 3DVAR method 
proposed by Gao et al. (2004) and Ge and Gao (2007) 
is attractive for convective scale because of its 
computational efficiency and use of simplified model 
equations as constraints without resorting to 4DVAR. 
Because the model equations are not applied as strong 
constraints, problems with nonlinearity of the system 
may be reduced, and the convergence to a global 
minimum might be achieved more easily than in 
4DVAR. However, the major shortcoming is that the 
background error covariances are stationary and 
isotropic, and error covariances related to model 
equations can not be simply defined. For convective-
scale weather, considering the nature of radar data, 
flow-dependent background error covariances, such as 
derived from EnKF method, are sorely needed. To 
blend advanced features of both the variational and 
EnKF methods, and to overcome their respective 
shortcomings, a hybrid EnKF-based 3DVAR 
framework is needed. For large-scale data assimilation, 
such an approach was initially demonstrated for a 
quasi-geostrophic system by Hamill and Snyder (2000) 
and further suggested by Lorenc (2003), Buehner 
(2005), and Zupanski (2005) with different 
formulations. Wang et al. (2007) showed that the 
formulations proposed by Hamill and Synder (2000), 
Lorenc (2003) and Buehner (2005), though different in 
their implementations and computational cost, are all 
mathematically equivalent. In the hybrid method, the 
variational framework is used to conduct data 
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assimilation within which the flow-dependent 
ensemble covariances are effectively incorporated to 
estimate the background error covariance. Further case 
studies have demonstrated the potential advantages of 
the hybrid method over both standalone variational 
method and EnKF method with small ensemble size 
(Wang et al. 2008a,b; Buehner et al. 2010a,b). 
However, whether these hybrid methods can be 
directly extended to the convective scale has not been 
explored so far. The purpose of this paper is to 
demonstrate the potential usefulness of the hybrid 
EnKF-3DVAR method to convective scale data 
assimilation, especially with radar data.   

In section 2, we introduce the hybrid EnKF-
3DVAR system while section 3 describes the DA 
experiment design. Experiment results and quantitative 
performance are assessed in section 4. We conclude in 
section 5 with a summary and outlook for future work.  
 

2. The Hybrid EnKF-3DVAR scheme 
In the current implementation of the hybrid 

method for convective scale, the ensemble covariance 
is incorporated in the variational framework through 
the extended control variable method (Lorenc 2003; 
Buehner 2005; Wang et al. 2007), and the ensemble 
covariance localization is conducted in the model state 
variable space (i.e., model space localization), and 
preconditioning is performed with respect to the 
background term. A convenient approach, initially 
suggestion by Lorenc (2003), is to combine the 
ensemble-derived and static covariance matrices 
through augmentation of the state vector, from v to (v, 
w). The cost function can be written as, 
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Where, Δx  is the analysis increment, B is the full-rank 
3DVAR covariance matrix and is modeled in our 
system using recursive filters (Purser 2003a, b). P is 
the covariance matrix derived from an ensemble of 
forecasts. The v is the control variable defined in 
associated with B, and w is the augmented control 
vector associated with P. By using control variables v 
and w, instead of 1 2,Δ Δx x in Eq. (2), the minimization 

procedure is preconditioned by ( ) ( )1/ 2 1/ 2,B P
respectively. This technique is first proposed by Derber 
and Rosati (1989). The definition of ( )1/ 2B is the same 
as Gao et al. (2004). If no covariance localization is 
applied, P1/2 is simply a rectangular matrix whose 

columns are ensemble perturbations divided by square 
root of N-1, where N is the ensemble size. The 
covariance localization of the ensemble covariance in a 
variational system with preconditioning is discussed in 
Lorenc (2003), Buehner (2005) and Wang et al. (2007). 
The procedure and cost of doing so were also discussed 
in these papers. For computational efficiency, we also 
use recursive filter to do covariance localization, as 
suggested in Wang et al. (2008a). 
       In Eq. (2), there are two factors β1 and β2 that 
define the weights placed on the static background-
error covariance and the ensemble covariance. To 
conserve the total background-error variance, β1 and β2 
are constrained by, 
 

2 2
1 1 1β β+ =                                       (3) 

 
A similar constraint was applied in Hamill and Snyder 
(2000). This approach for combining two matrices to 
form hybrid covariances provides flexibility since it 
allows for weighing the relative contributions of two 
covariance matrices. When β1 = 1, the analysis is back 
to a 3DVAR-alone analysis scheme, and when β2 = 1, 
then the analysis is mathematically equivalent to a 
EnKF-alone scheme, we can called is an En-3DVAR 
scheme. Though the dimension of the control variables 
is increased, the form of the background term of the 
cost function remains unchanged or similar so that 
codes from an existing 3DVAR system can readily be 
utilized (Lorenc 2003).  

In our hybrid EnKF-3DVAR system, the 
simplified model equation constraints, such as mass 
continuity equation, can still be used, as hinted by 
Hamill and Synder (2000) and Lorenc (2003). Though 
the simplified covaviances related to these constraints 
can be determined by numerical experiments, they are 
specified as constants through the data assimilation 
cycles. Spatial structure is not allowed because it is 
difficult to know the error statistics for these model 
equations. Thus the role of these constraints may not be 
effective. For example, the simplified covariance for 
the mass continuity constraint may vary significantly in 
the area where a thunderstorm exists compared to a 
relatively clear area.  

In addition, the hybrid system will assimilate both 
radar reflectivity data and radial velocity data. Within 
this system, flow-dependent background-error 
covariances, in particular cross-covariances between 
microphysical and dynamic variables will be derived 
and utilized.  

 The single-resolution EnKF system developed in 
Gao and Xue (2008) will be used for generating 
perturbations for ensemble members. It is an ensemble 
square-root Kalman filter algorithm of Whitaker and 
Hamill (2002), which also was used by Snyder and 
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Zhang (2003), Dowell et al. (2004) and Tong and Xue 
(2005). The basic update equation of the Kalman filter 
is, 
 

1 ( )( )a Tb T T o bH− ⎡ ⎤= + + −⎣ ⎦x x PH R HPH y x   (4) (4) 

 
As defined earlier, x is the state vector we seek to 
estimate, and superscripts a and b refer to the analysis 
(posteriori estimate) and the background (prior 
estimate), respectively, and yo is the observation vector. 
H is the forward observation operator, and H is its 
linearized version. R the covariance matrices for the 
observation and P is the ensemble covariance matrices 
defined earlier.  This EnKF approach involves the use 
of forecast and analysis ensembles. First, an ensemble 
of ARPS models is integrated forward for the length of 
analysis cycle or until the next observation is available, 
so as to yield an ensemble of forecasts. Then, the EnKF 
analyses are done serially, one observation at a time. 
For a given observation, the background error 
covariance is calculated from the ensemble, and is used 
to do the analysis. This is repeated until all 
observations are done at a given time.  

For the hybrid method, an extra model integration 
for the length of the analysis cycle is needed to produce 
a control forecast and analysis cycle. The EnKF 
analyses using Eq. (4) are performed to update analysis 
perturbations for each ensemble members. Then, the 
cost function (1) is minimized, to obtain optimal 
analyses of control vectors v and w, and the optimal 
analysis increment, Δx , is derived from (2). The 
ensemble mean analysis is partially or completely 
replaced using the high-resolution 3DVAR analysis 
and ensemble perturbation using EnKF. Finally, the 
initial conditions for ensemble and one control member 
of forecast are produced. The above steps are repeated 
to carry out another data assimilation cycle.  

Basically, we perform in parallel a set of EnKF 
analyses to produce ensemble forecast and statistics 
and a single 3DVAR analysis that utilizes error 
statistics derived from the ensemble system. The single 
3DVAR analysis may feed back into the ensemble 
system by providing a better analysis to completely or 
partially replace the ensemble mean (Fig. 1).  

   

3. Model and experimental Design 
 

a)  Prediction model and truth simulation for 
OSSEs 
 

We test our hybrid EnKF-3DVAR algorithm and 
compare its results with those of 3DVAR-alone and 
EnKF-alone schemes, using simulated data from a 
classic supercell storm of May 20, 1977 Del City, 

Oklahoma (Ray et al. 1981). The ARPS prediction 
model is used in a 3D cloud model mode and the 
prognostic variables include three velocity components 
u, v, w, perturbation potential temperature 'θ , pressure 
p, and six categories of water substances, i.e., water 
vapor specific humidity qv, and mixing ratios for cloud 
water qc, rainwater qr, cloud ice qi, snow qs and hail qh. 
The microphysical processes are parameterized using 
the three-category ice scheme of Lin et al. (1983). 
More details on the model can be found in Xue et al. 
(2000; 2001). 

For our experiments, the model domain is 
57×57×16 km3. The horizontal grid spacing is 1 km 
and the vertical resolution is 500 m. The truth 
simulation run is initialized from a modified real 
sounding plus a 4 K ellipsoidal thermal bubble 
centered at x =48, y =16 and z =1.5 km, with radii of 10 
km in x and y and 1.5 km in the z direction. Open 
conditions are used at the lateral boundaries. The 
length of simulation is 2 hours. A constant wind of u = 
3 ms-1 and v =14 ms-1 is subtracted from the observed 
sounding to keep the primary storm cell near the center 
of model grid. The evolution of the simulated storms is 
similar to those documented in Xue et al. (2001). 
During the truth simulation, the initial convective cell 
strengthens over the first 30 min. The strength of the 
cell then decreases over the next 30 min or so, which is 
associated with the splitting of the cell in two at around 
55 min. The right moving (relative to the storm motion 
vector which is towards north-northeast) cell tends to 
dominate the system and its updraft reaches a peak 
value of over 40 m s-1 at 90 min. The initial cloud starts 
to form at about 10 min, and rainwater forms at about 
15 min. Ice phase fields appear at about 20 min. A 
similar truth simulation was also used in Gao et al. 
(2001), Tong and Xue (2005), Gao and Xue (2008). 

b) Simulation of radar observations 
 

As in Snyder and Zhang (2003) and Tong and Xue 
(2005), the simulated radial velocity observations are 
assumed to be available on the grid points. The 
simulated radial velocity, vr, is calculated from, 
 sin cos cos s sinrv u v co wφ μ φ μ μ= + +    (5) 

where μ is the elevation angle and φ  is the azimuth 
angle of radar beams, and u, v and w are the model-
simulated velocities interpolated to the scalar points of 
the staggered model grid. Random errors drawn from a 
normal distribution with zero mean and a standard 
deviation of 1 m s-1 are added to the simulated data. 
Since vr is sampled directly from the model velocity 
fields, hydrometeor sedimentation is not involved. The 
ground-based radar is located at the southwest corner 
of the computational domain, i.e., at the origin
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Fig. 1. Illustration of cycle used in a hybrid EnKF-3DVAR analysis scheme. 
 

 
 
of the x-y coordinates. The simulated reflectivity 
observations are calculated based on Smith et al. (1975) 
and Ferrier (1994). For reflectivity, random errors 
drawn from a normal distribution with zero mean and a 
standard deviation of 3 dBZ are added to the simulated 
data. The radial velocity data are assimilated and are 
only available where the truth reflectivity is greater 
than zero in the analysis domain. We also use the data 
at every other grid point of the 1 km truth simulation 
grid in all three directions. 

c) Design of assimilation experiments 
 

We start the initial ensemble forecast at 20 min of 
the model integration time when the storm cell is well 
developed. To initialize the ensemble members, 
random noise is first added to the initially horizontally 
homogeneous first guess defined using the 
environmental sounding. A 2-D five-point smoother is 
applied to the resultant fields, similar to a method used 

by Zupanski et al. (2006). The random noise is sampled 
from Gaussian distributions with zero mean and 
standard deviations of 5 m s-1 for u, v, and w, and 3 K 
for potential temperature. These perturbation variances 
are somewhat larger than those used in Tong and Xue 
(2005) but the standard deviation of the final 
perturbations is not necessarily larger because of the 
smoothing. Other variables, including the 
microphysical variables, are not perturbed at the initial 
time. The radial and reflectivity observations are 
simulated and assimilated in 5 min cycle in all three 
data assimilation schemes. The first analysis is 
performed at 20 min and 20 ensemble members are 
used unless otherwise noted. To localize covariances 
during the analysis, Eq. (4.10) of Gaspari and Cohn 
(1999) is used when calculating the background error 
matrix PHT, as suggested by Houtekamer and Mitchell 
(2001). A cut-off radius of 8 km is used in most of our 
experiments.  
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We perform two set of experiments. The first 
group of experiments is performed to compare the 
performances of three different schemes when 
observations from a single Doppler radar are used. The 
second group of experiments will be performed when 
observations from two Doppler radars are used. For 
comparison purposes, all three methods (3DVAR-
alone, EnKF-alone and Hybrid EnKF-3DVAR) are 
performed with 16 data assimilation cycles and each 
cycle has a 5 minute interval. Sensitivity experiments 
with different combinations of weights and different 
physical scheme are being tested and have not been 
finished as the time of this writing.    

 
4. Results 

As stated above, the first group of experiments is 
performed with radial velocity and reflectivity from a 
single radar. Figure 2 shows the final assimilation 
results after 16 assimilation cycles with 5 minutes each. 
The low-level flow, reflectivity patterns, and the 
strength of the cold pool from both EnKF-alone and 
hybrid EnKF-3DVAR agree very well with the 
simulated truth (Fig. 2a) and are better than the result 
using 3DVAR-alone method (Fig. 2b), although this 
3DVAR-alone can also establish the storm structures 
reasonably well (Fig. 2b). The most obvious difference 
is the reflectivity field in the center of model domain. 
The area of reflectivity values greater than 55 dBZ is 
over extended in a peanut-shaped region for the 
3DVAR-alone method. The spread of potential 
temperature is little bit far to the south-south-west 
direction in the south-west corner (Fig. 2b). But the 
strength of the cold pool in the 3DVAR-alone method 
indicated by minimum potential temperature reaches to 
-7.30o, which is closer to the truth simulation (-7.28o) 
than both EnKF-alone method and hybrid method. 

The rms errors of the analyzed fields with data 
from a single radar are shown in Figure 3. The rms 
error calculation is limited to the regions where the 
truth reflectivity exceeds 10 dBZ. Figure 3 shows that 
the rms errors for model variables u, v, w, ɵ, qv, and 
reflectivity Z (derived from the hydrometeor mixing 
ratios) generally decrease with the cycles in all three 
experiments. The errors for 3DVAR-alone decrease 
more slowly and remain at a higher level at the end of 
assimilation cycles than those for other two ensemble 
based method for most of model variables. For 
example, the rms error of w is close to 3 m s-1 at 100 
min for 3DVAR-alone method, while that in EnKF and 
hybrid EnKF-3DVAR is close to 1.3 m s-1. The rms 
errors of qv for 3DVAR is 0.4 g/kg, and that in EnKF 
and hybrid EnKF-3DVAR is below 0.2 k/kg. While 
these differences are significant, the error levels of late 
assimilation period for EnKF and hybrid EnKF-
3DVAR are unrealistically low due to the perfect 

model assumption. For real data cases where model 
error exists, the analysis errors are most likely to be 
much larger (see, e.g., Dowell et al. 2004, 2010). For 
systems containing discrete intense updrafts, the rms 
error tends to exaggerate errors because of small spatial 
displacement and/or structure discrepancies, such as 
those seen in Fig. 2. So the results for 3DVAR-alone 
are not unreasonable. It should be noted that for most 
of model variables, the performances of EnKF and 
hybrid method are very close, with EnKF a little bit 
better. Interestingly, the differences among the rms 
errors for Z in different experiments are smallest (Fig. 
3f). The rms error of Z is decreased to about 5 dBZ for 
almost all three experiments. The variation of rms 
errors is volatile for 3DVAR method, especially near 
the very beginning of the assimilation. The method can 
bring down the errors from about 40 dBZ to 10 dBZ in 
two data assimilation cycles, but the errors quickly 
increase to above 20 dBZ after a 5-minute model 
integration step. The rms errors for the EnKF method 
decrease more smoothly throughout the data 
assimilation cycles because its statistical feature. 
Perhaps the advantage of hybrid method looks more 
obvious for reflectivity. It fits the observed reflectivity 
more closely than other two methods. Though the 
evolution of rms errors is also volatile for the first 10 
minutes, it quickly settles down and its rms errors are 
the lowest among all three methods.   

The second group of experiments is performed 
with radar data from two simulated Doppler radars. 
Figure 4 shows the final assimilation results after 16 
assimilation cycles. As expected, the low-level flow, 
reflectivity patterns, and the strength of the cold pool 
look much better (Fig. 4b) for 3DVAR-alone method 
(Fig. 4b) especially for reflectivity field. The pattern 
for potential temperature is improved when compared 
with the single radar experiment (Fig. 2b), but still not 
as good as the truth simulation (Fig. 4a), and that for 
EnKF-alone (Fig. 4c) and hybrid EnKF-3DVAR (Fig. 
4d). So with more data used, the results for 3DVAR-
alone are quickly improved. Again, the most obvious 
improvement is for reflectivity field in the center of 
model domain. The area for reflectivity values larger 
than 55 dBZ is more similar to the shape of truth 
simulation. The storm structure for all three methods is 
well established by the end of data assimilation at 100 
minutes of reference model assimilation time.  The 
variation of rms errors for the analyzed fields using 
data from two radars is shown in Fig. 5. It is not 
surprising that the rms errors for model u, v, are much 
improved for the 3DVAR-alone method. For the first 
several data assimilation cycles, the errors for 3DVAR 
method are the lowest. With more cycles, the errors for 
the hybrid method become the lowest among three 
methods. For most of variables (except for potential 
temperature), the errors for 3DVAR-alone decrease 
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more quickly than that for other two methods for the 
first several data assimilation cycles, but remain at 
higher levels at later DA cycles. The variation of rms 
errors is less volatile with two radars than that with a 

single radar for 3DVAR method. The other features are 
quite similar to the cases when data from a single radar 
are used. 

 
 

 
 
Fig. 2. Horizontal winds (vectors; m s-1), perturbation potential temperature (contours at 1-K intervals), and 
simulated reflectivity (shaded contours; dBZ) at 250 m AGL for (a) the truth simulation; (b) the 3DVAR-alone 
analysis; (c) the EnKF-alone analysis; and (d) the hybrid EnKF-3DVAR analysis for the single radar experiment. 
The time shown is at 100 min (the end of data assimilation cycles). Wind vectors are shown every 2 km. 
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Fig. 3. The rms errors of the analysis and forecast for the 3DVAR-alone, EnKF-alone, high-resolution hybrid 
EnKF-3DVAR, and dual-resolution hybrid methods averaged over points at which the reflectivity is greater than 10 
dBZ.for (a) u-wind component, (b) v-wind component, (c) vertical wind speed, (d) potential temperature, (e) water 
vapor mixing ratio, and (f) reflectivity. 
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Fig. 4. Same as Fig. 2, but for the experiment with two radars 
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Fig. 5. Same as Fig. 3, but for the experiment with two radars. 
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5. Summary and future work 

A preliminary version of a hybrid EnKF-3DVAR 
data assimilation system has been developed based on 
existing 3DVAR and ensemble Kalman filter (EnKF) 
programs using the ARPS model grid. The algorithm 
uses the extended control variable approach to combine 
the static and ensemble-derived flow-dependent 
forecast error covariances (Lorenc 2003; Buehner 
2005; Wang et al. 2007). In the hybrid method, the 
relative weights assigned to the static and flow-
dependent error covariances can be tuned, and the 
tuning can be case and scale dependent.  

The method is applied to the assimilation of 
simulated radar data for a supercell storm. Two groups 
of experiments are performed with different amount of 
radar data. Results obtained using 3DVAR-alone (with 
static covariance entirely), Hybrid EnKF-3DVAR, and 
the standard EnKF-alone are compared. When data 
from a single radar are used, the EnKF-alone method 
provides the best results for model dynamic variables, 
but hybrid method provides the best results for 
hydrometeor related variables in term of rms errors. 
Though the storm structures can be established 
reasonably well using the 3DVAR-alone method, the 
rms errors are generally worse than other two methods. 
When data from two radars are used, the rms errors for 
hybrid method are the smallest for most of the model 
variables. With two radars, the results from the 
3DVAR-alone are closer to that of the EnKF-alone 
method. For this idealized case, more weights for flow-
dependent error covariances generally have better 
results. Also our tests indicate that the hybrid scheme 
can reduce the storm spin-up time because it fits the 
observations for the beginning of the cycles.  

Our future studies will include answering a 
number of keys questions within the hybrid EnKF-
3DVAR framework just described. They include 1) 
What is the optimal choice of the relative weight of the 
static and flow-dependent covariances, at the storm 
scale for radar data assimilation? 2) What is the benefit 
of equation constraints in the hybrid system and how is 
the error covariance for these equation constraints 
estimated from ensemble forecasts? 3) What is the 
optimal combination of ensemble size and grid spacing 
for a specific computational cost? 4) How does the 
overall performance of the proposed method compare 
with 3DVAR-alone and EnKF-alone methods when 
model error appears? 5) What is the general cost of the 
proposed method compared with the other two 
methods? The answers to these questions at storm-scale 
are likely to be quite different from those for large-
scale flows and/or conventional observation networks 
where state variables are usually directly observed but 
the observations tend to be spare compared to model 

grid spacing. Sensitivity experiments will be performed 
to answer these questions in the near future. 
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