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1. INTRODUCTION 
 
 A succession of research groups at the University 
of Wisconsin, led by second author Wang, has for over 
20 years been studying the microphysical structure of 
thunderstorms as documented in Straka (1989), 
Johnson et al. (1993, 1994), Lin and Wang (1997), Lin 
et al. (2005, henceforth LWS05) and Schlesinger et al. 
(2006, henceforth SHW06; 2008, henceforth SHW08). 
The key tool has been the three-dimensional (3D) cloud 
model WISCDYMM (Wisconsin Dynamical and 
Microphysical Model), originated by Straka (1989) and 
subsequently modified by Johnson et al. (1993, 1994), 
Lin and Wang (1997), LWS05 and SHW06. 
 
 By means of six 2-h WISCDYMM simulations, 
LWS05 compared the microphysical aspects of three 
summertime thunderstorms apiece in two contrasting 
climatic regions, the US High Plains (one case each 
from Colorado, Montana and North Dakota) and the 
humid subtropics (one case from Taipei, Taiwan and 
two south Florida cases). Despite being limited to only 
two climatic regions and one season of the year, LWS05 
yielded two notable findings: 
 
 a) Throughout the active life of a given storm after 
its early adjustment phases, the fraction of the total 
condensate mass contributed by each hydrometeor type 
seemed to be quasi-steady, along with the individual 
microphysical transfer rates contributing to the 
production and depletion of each precipitating 
hydrometeor category; and 
 
 b) The partitioning broke down differently in one 
region versus the other. The High Plains storms had 
much higher ice (total frozen condensate) mass 
fractions than the subtropical storms, ~0.78-0.82 versus 
~0.48-0.57.  Since the simulated storm structures were 
found to compare favorably with observations (LWS05), 
it is quite plausible to regard them as physically realistic. 
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 The above findings motivated us to embark on a 
WISCDYMM-based thunderstorm variability study in the 
same spirit as in LWS05, but far larger in scope. This 
expanded study, as reported in SHW08, subsumes 105 
thunderstorm cases distributed among 10 climatic 
zones, including nearly 40 cases from seasons other 
than summer. 
 
 This substantially wider thunderstorm variability 
study, of which an earlier stage with 56 cases 
distributed among the same 10 climatic zones was 
reported in SHW06, was compiled in order to investigate 
whether systematic differences in the bulk microphysics 
of simulated storms in contrasting climatic regions 
continue to apply as markedly as in LWS05 when the 
variety of thunderstorm-supporting environments is thus 
broadened. 
 
 As reported in SHW08, such did not turn out to be 
the case. For both the full set of 105 simulations and a 
subset of 64 limited to the warm months, taken to be 
May-September in the Northern Hemisphere and 
November-March in the Southern Hemisphere, all of the 
four best-sampled climate zones (temperate continental 
with warm summers, humid subtropical, Mediterranean, 
humid tropical) showed wide intrazonal spreads in the 
ice mass fraction, well over half the total range of ~0.20-
0.80 for the entire storm population. Also, the mean ice 
fraction were comparable in all of the first three zones, 
between ~0.59 and ~0.65. The mean ice fraction was 
indeed higher for the locations with “High Plains” 
characteristics (semi-arid and extratropical with at least 
700 m MSL surface elevation) but only modestly so 
(~0.7) versus the humid subtropics (~0.6), although far 
lower for the humid tropics (~0.45). 
 
 In light of the above findings, and the general 
tendency for cool-season extratropical thunderstorms to 
occur in air masses substantially warmer and/or moister 
than “climatology”, SHW08 departed from LWS05 by 
focusing on using linear regression analysis to evaluate 
correlations between the WISCDYMM-derived 
hydrometeor mass fractions (HMF’s) and environmental 
indices that can be computed from the initial model 
sounding. In particular, SHW08 evaluated the ground-
relative melting level (ZMLT) both as sole predictor and 
jointly with the Convective Available Potential Energy 



(CAPE), which is also among the key parameters in the 
context of severe storm forecasting. 
 
 As reported in SHW08, for both the full and warm-
month storm case populations, the univariate analyses 
of the HMF’s versus ZMLT alone yielded fair negative 
correlations between ~ -0.44 and ~ -0.48 versus the 
(total) ice and cloud ice, and somewhat better positive 
correlations of ~ 0,60 versus rain. But more strikingly, 
the bivariate analyses with CAPE added as the second 
predictor boosted the correlation magnitudes 
substantially for both of the frozen HMF’s, to between 
~0.64 and ~0.69, and less markedly but still appreciably 
for rain, to ~0.72 (no meaningful sign can be attached to 
a multiivariate correlation coefficient). Each of the other 
three HMF’s under consideration (hail, snow, cloud 
water) yielded weaker correlations than those just 
mentioned, especially for cloud water, but each bivariate 
regression analysis again outperformed its univariate 
counterpart. 
 
 We have since built upon the work reported in 
SHW08 by applying the same univariate and bivariate 
analysis techniques as we used for the melting level in 
that paper, but using the cloud-base temperature and 
cloud-base pressure as alternate primary predictors for 
the HMF’s. This paper highlights the results from our 
further statistical analyses for the same suite of 
WISCDYMM storm simulations, using the results from 
SHW08 as a benchmark of comparison. 
 
2. SUMMARY OF RELEVANT MODEL ASPECTS 
 
2.1 Model Properties 
 
 WISCDYMM is a time-dependent nonhydrostatic 
quasi-compressible 3D model on a Cartesian Arakawa-
C staggered grid. The model domain is 55x55x20 km3 in 
the respective x-, y- and z-coordinates, with uniform grid 
cell dimensions of 1.0x1.0x0.2 km3. Finite-difference 
advection schemes and boundary conditions are as in 
LWS05, with subgrid flux parameterizations as in Straka 
(1989). Radiation, topography and the Coriolis force are 
omitted. The time step is 2 s with a reduced sound 
speed of 200 m s-1, running each simulation out to 2 h. 
 
 The microphysical package in WISCDYMM admits 
five classes of hydrometeors: cloud water, cloud ice, 
rain, snow and graupel/hail. It features a bulk 
parameterization which, as elaborated in Straka (1989), 
is based mainly on Lin et al. (1983) and Cotton et al. 
(1982, 1986). Cloud water droplets and cloud ice 
crystals are monodisperse and move with the air, while 
precipitating hydrometeors follow inverse exponential 
size distributions. 
 
 The bulk microphysics parameterization provides 
for up to 37 mass transfer rates among water substance 
classes, although several of these rates (e.g., 
condensation onto and evaporation from wet snow and 
wet graupel/hail) are turned off in this study. As itemized 

in Table 1 of SHW06, 25 of the active transfer rates are 
a source or sink of precipitation. 
 
 Our methodology for selecting storm cases is 
summarized in section 2.5 of SHW08. For each case, 
the horizontally homogeneous base-state potential 
temperature, water vapor mixing ratio and horizontal 
wind components are derived by vertically interpolating 
to the model grid levels the closest available sufficiently 
deep rawinsounding to the observed convective event in 
space and time, obtained from the University of 
Wyoming's sounding archive website  
 
 http://weather.uwyo.edu/upperair/sounding.html 
 
 As in Klemp and Wilhelmson (1978), a quasi-
ellipsoidal buoyant bubble is then superimposed in the 
lower central portion of the model domain. If the 
resulting model storm is unrealistically weak and/or 
short-lived, the buoyant impulse is imposed only after 
preconditioning the base-state temperature and mixing 
ratio profiles in the interpolated sounding via prescribed 
limited-duration mesoscale lifting through the depth of 
the impulse to suitably increase the relative humidities 
and/or weaken any caps. The details of the model 
initialization procedure are covered in section 2.2 of 
SHW08. 
 
 Each 2-h WISCDYMM simulation is run in six 20-
min save/restart segments, saving the model fields and 
auxiliary microphysical data every 2 min. The main 
convective activity is kept well within the domain area by 
translating the model domain at a suitable earth-relative 
velocity, constant throughout any one segment but 
generally varying from one segment to another. 
 
3. RANGE OF CLIMATIC REGIONS SAMPLED 
 
 The global map shown in Fig. 1, identical to Fig. 1 
of SHW08 but reproduced here for completeness, plots 
the locations of the 79 stations for which University of 
Wyoming archive rawinsoundings were processed to 
define the initial environments in the 105 WISCDYMM 
storm simulations. Of these locations, 62 entail one 
case each and the remaining 17 from two to four cases 
each. About two-thirds of the storm cases are from the 
United States east of the Rockies, western and central 
Europe or southeast Asia, with much sparser sampling 
from other regions that have lower thunderstorm 
frequencies, poorer rawinsonde coverage or both.  
 
 As displayed in detail in Table 1 of SHW08, the 79 
sounding stations are grouped by each of 10 climatic 
zones adapted from Moran and Morgan (1994). Our 
climatic terminology differs from theirs in that we have 
subjectively subdivided their "temperate continental" 
zones into "warm summer" and "cool summer" subtypes 
and used the common synonym “Mediterranean” for 
their “dry summer” subtropical zones. 
 
 The “High Plains” descriptor in LWS05 is not 
among the climatic classifications in Moran and Morgan 



(1994). Nevertheless, we regard five of the extratropical 
stations, encompassing seven of the storm cases, as 
having High Plains characteristics because they 
occurred at semi-arid locations at or above 700 m MSL. 
This applies to five cases among four dry/steppe 
stations and two cases at one boreal station, 
symbolized in Table 1 of SHW08 by suffixing with “HP” 
the climatic descriptors for those five stations.  
 
 Table 1, identical to Table 2 of SHW08, displays the 
numerical partitioning of the 79 stations and 105 cases 
among the 10 climate zones. Clear majorities of both 
counts are distributed among four of the zones: warm-
summer temperate continental, humid subtropical, 
Mediterranean and humid tropical, each of the 
remaining six zones being much more sparsely 
represented for the same reasons as the highly uneven 
distribution of the station locations in Fig. 1. 
 
 In LWS05, all six storm cases occurred in the 
Northern Hemisphere and were confined to the summer 
months of June through August. In our current 105-case 
study, by contrast, excluding three cases within 10˚ of 
the equator and hence nearly devoid of thermal 
seasonality, 38 Northern Hemisphere cases occurred 
outside of the warm months, defined for our purposes 
as May through September. Also, another 10 of our 
cases occurred in the Southern Hemisphere, though all 
of those 10 cases were confined to the corresponding 
warm months of November through March. 
 
4. LINEAR REGRESSION METHODOLOGY 
 
 A WISCDYMM simulation of a real convective 
storm from the past is akin to numerical weather 
prediction, albeit strictly in the sense of “hindcasting” 
and on far smaller spatial and temporal scales than an 
operational synoptic-scale numerical weather forecast 
run out to a week or so. However, in the context of both 
our univariate and bivariate linear regression analyses, 
we henceforth take each environmental index derived 
from the processed initial model sounding to be 
“observed”, as we also do for any quantity derived from 
run-time WISCDYMM output, and we regard the 
regression-based estimate of the “observed” quantity as 
its “predicted” value. Thus, the remainder of this paper 
is using the term “prediction” in a statistical rather than 
hydrodynamic sense.  
 
4.1 Predictands 
 
 The six predictands under consideration are bulk 
HMF’s that quantify the portion of the total hydrometeor 
(condensate) mass contributed by each of the five 
hydrometeor classes (cloud water, cloud ice, rain, snow 
and hail) in a fully developed WISCDYMM-simulated 
storm, along with the total frozen hydrometeor mass, 
henceforth simply referred to as ice for brevity. 
 
  As in LWS05, SHW06 and SHW08, we compute 
each HMF by time-averaging the domain-integrated 
mass for the hydrometeor class in question over a large 

part of the mature storm stage and then dividing the 
result by the total domain-integrated condensate mass 
time-averaged over the same period. We denote the 
HMF’s for cloud water, cloud ice, rain, snow, hail and ice 
by CWF, CIF, RF, SF, HF and IF respectively, where 
 
  IF = CIF + SF + HF. 
 
 We use 60-120 min as our time-averaging period, 
as also done in SHW06 and SHW08, because it spans 
a substantial fraction (50%) of the total simulation time 
and also begins long after the early (~15 min) bubble-
induced overshooting updraft peak that occurs in most 
of the cases.  
 
4.2 Predictors 
 
 For sole predictor of each HMF, our univariate 
linear regression analyses used one of the following 
three environmental indices derived from an upward 
probe of the processed initial sounding: 
 
 (1)  The ground-relative melting level ZMLT. It is 
computed as the height AGL (above ground level, i.e., 
the lower boundary of the WISCDYMM domain) to 
which the base-state (ambient) temperature T0(z) 
interpolates linearly to 0˚C between the bottom and top 
of the lowest vertical grid interval in which its Celsius 
value changes sign from positive to negativei; 
 
 2)  The cloud-base temperature TLCL. Equating 
cloud-base level with the lifting condensation level LCL, 
we compute TLCL from non-entraining parcel theory by 
launching the parcel from the ground and locating the 
level where the dry adiabat through the launching 
temperature intersects the dew point curve 
corresponding to the launching water vapor mixing ratio, 
defining parcel temperature and dew point profiles that 
are valid up to the LCL. As this intersection point must 
lie in the vertical grid interval where the resulting parcel 
dew point depression changes sign from positive at the 
bottom to negative at the top (before applying an 
instanteous saturation adjustment to eliminate the 
supersaturation there), we locate the LCL by linearly 
interpolating the parcel dew point depression to zero, 
and finally compute TLCL by linearly interpolating the 
parcel temperature (prior to the adjustment) to the LCL; 
 
 3) The cloud-base pressure PLCL. It is computed 
by logarithmically interpolating the base-state pressure 
to the LCL in the same bracketing grid interval as for 
TLCL, invoking the standard assumption that the 
pressure in the parcel is in equilibrium with the 
environment  at the same level. 
 
 Each of our bivariate linear regression analyses 
uses one of these three predictors jointly with CAPE, 
which is evaluated as 

    

CAPE = g
Tp !T0

T0
LFC

EL

" dz

 



where Tp is the parcel temperature, g is gravity [ = 9.80 
m s-2], LFC is the level of free convection and EL the 
equilibrium level  by the conventional  definitions except 
that we set LFC = LCL in the unusual event that Tp > T0 
at the LCL. For initial soundings not modified by the low-
level lifting mentioned in section 2, our CAPE values are 
typically ~20-50% larger than those computed on the 
University of Wyoming sounding archive. This is 
because we include latent heat of fusion when releasing 
latent heat to eliminate supersaturation where Tp < 0˚C, 
in full at -20˚C or colder and partially via a smooth 
transition from the liquid-only scenario between 0˚C and 
-20˚C, whereas the University of Wyoming ignores the 
latent heat of fusion. Our saturation vapor pressures 
transition from over liquid to over ice versus temperature 
in the same way as our latent heat coefficients.  
 
 Although the parcel is launched from the surface, 
its initial temperature and mixing ratio generally differ 
from the ambient (base-state) surface values, instead 
being based on adiabatic mixing of the lowest 500 m. 
 
4.3 Correlation parameters 
 
 For univariate regression, let X denote the sole 
observed (WISCDYMM-derived) predictor, Z the 
observed predictand, and Z* the predicted (regression-
derived) predictand. We focus on the following two 
correlation coefficients, computed after removing the 
mean values from all three quantities to simplify the 
calcutations as done by Panofsky and Brier (1958): 
 
 (a)   

rZX , the correlation between the observed 
predictand (one of the six HMF’s) and the sole observed 
predictor (one of ZMLT, TLCL or PLCL), measuring how 
well their regression line fits the former versus the latter 
in their two-dimensional scattergram; 
 
 (b)   

rZ*Z , the correlation between the univariately 
predicted predictand and the observed predictand, 
measuring how well the prediction under point (a) 
replicates the observations, a concept analogous to the 
so-called “A-B test” in audio engineering for comparing 
the sound quality of the output (the signal on a 
recording) versus the input (the program being 
recorded).  
 
 For bivariate regression, let X and Y denote the two 
observed (WISCDYMM-derived) predictors, again using 
Z to denote the observed predictand, and Z* the 
predicted (regression-derived) predictand. Analogously 
to the univariate scenario, we focus on the following two 
correlation coefficients, computed after removing the 
mean values from all four quantities: 
 
 (a#)   R ZXY , the multiple (or joint) correlation 
between the observed predictand (one of the six HMF’s) 
and the two observed predictors (one of ZMLT, TLCL or 
PLCL, jointly with CAPE), measuring how well their 
regression plane fits the former versus the latter in their 
three-dimensional scattergram, defining   R ZXY  to be the 

non-negative square root of the squared joint correlation 

coefficient 
  
R ZXY

2
  in Panofsky and Brier (1958) because 

the only intrinsically signed correlation coefficients 
applicable to bivariate analysis are the simple 
(univariate) correlation coefficients   

rZX ,   
rZY  and   

rXY   
that figure as follows 
 

  
  

R ZXY

2
=
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into computing 
  
R ZXY

2
; 

 
 (b#)   rZ*Z , with the same meaning as under point (b) 
but now measuring the correlation between the 
bivariately predicted predictand and the observed 
predictand,  
 
5. RESULTS  
 
5.1 Univariate and Bivariate Correlation 

Coefficients for “Observed” Hydrometeor Mass 
Fractions versus “Observed” Predictors 

 
 Table 2 shows the univariate correlation 
coefficients, rounded to three decimal places, for all six 
HMF’s versus each of the three primary predictors, 
together with the bivariate correlation coefficients 
similarly rounded for the same HMF’s, jointly versus 
each primary predictor and CAPE, for all 105 
WISCDYMM simulations. Table 3 displays the 
analogous correlation coefficients for the warm-month 
subset of 64. As noted in the Introduction, ZMLT both by 
itself and jointly with CAPE was also among the HMF 
predictors evaluated in SHW08, as shown in Tables 5 
and 6 of the earlier paper for the full and warm-month 
storm populations respectively. Hence, the reprise of 
ZMLT as an HMF predictor in the current paper is 
intended not for sheer reiteration but as a benchmark 
against which to assess the skills of TLCL and PLCL. 
 
 Perusal of Tables 2 and 3 reveals that: 
 
 a) Except when predicting HF, TLCL as sole 
predictor produces appreciably stronger correlations 
than ZMLT, especially for SF. The improvement is 
academic for CWF, which is by far the weakest 
predictand. Jointly with CAPE, TLCL also produces a 
dramatic improvement versus using TLCL alone for 
each predictand except HF, for which the improvement 
is modest. Most encouragingly, the bivariate correlation 
magnitudes exceed 0.8 for IF, CIF and especially RF; 
 
 b) With the exceptions of SF and RF, PLCL as 
sole predictor further improves the predictands in 
comparison with TLCL, albeit only to a modest extent 
except more dramatically for CWF, which nevertheless 
remains the weakest predictand in the univariate 
regressions. However, adding CAPE as a joint predictor 
with PLCL produces far less improvement in the 



correlation magnitudes than when either ZMLT or TLCL 
is the primary predictor, and is of virtually no help in 
predicting either SF or RF. In fact, for three of the 
predictands (IF, HF, RF), the bivariate correlations 
themselves are lower for PLCL versus ZMLT as primary 
predictor; 
 
 c) These results are qualitatively similar for both 
the full set of storm cases (Table 2) and the warm-
season subset (Table 3) despite some differences, 
mostly minor, in the precise magnitudes (to within the 
three decimal places displayed) of corresponding 
correlation coefficients.  
 
 The nature and scope of the findings just described 
call for three comments: 
 
 1) Much of the contrast, between the marked 
improvements from univariate to bivariate HMF 
predictions with ZMLT or TLCL as primary predictor and 
the much smaller improvements with PLCL as primary 
predictor, results from contrasting magnitudes among 
the correlations between each primary predictor and the 
secondary predictor, i.e., CAPE. These correlations (not 
tabulated) were sizable for ZMLT (0.461) and even 
more so TLCL (0.531) as primary predictor, but near 

zero (0.035) for PLCL. In the equation for 
  
R ZXY

2
 at the 

end of section 4.3, the denominator shows that a sizable 
correlation between the two predictors (  rXY ) tends to 

boost 
  
R ZXY

2
 above 

  
rZX

2  (and hence   R ZXY  above |  rZX |) 
more effectively than a smaller one, and that – in the 
worst-case scenario -- the second predictor is of no help 
if there is no correlation between the two predictors and 
also between the predictand and the secondary 
predictor; 
 
 2) The overall similarity between corresponding 
correlation coefficients, in Table 3 versus Table 2, is not 
surprising in light of Fig. 2. This diagram, identical to 
Fig. 4 of SHW08, illustrates one of the findings from 
SHW08 reviewed in the Introduction, namely the 
similarity between both the ranges and the mean values 
for the ice fraction IF in a given climatic zone with 
inclusion of the cool-month storm cases (left panel of 
Fig. 2) and without (right panel of Fig. 2), for the four 
best-sampled of the climate zones in Table 1 plus the 
“High Plains” cases. In view of these similarities, all 
further coverage of the results in sections 5.2 and 5.3 
below pertains only to the full set of 105 cases; 
 
 3) In addition, in order to avoid an impractically 
large number of  figures while highlighting some of our 
better results, the scope of our scattergram plots in 
these subsections is limited to just the ice fraction IF 
and rain fraction RF among the six predictands. 
 
5.2 Scattergrams for “Observed” Hydrometeor 

Mass Fractions versus Individual “Observed” 
Predictors 

 

 A scattergram plot, including the regression line 
and correlation coefficient, is shown in Fig. 3 for the 
observed (WISCDYMM-derived) IF values versus 
ZMLT. Analogous scattergrams are shown in Figs. 4 
and 5 for IF versus TLCL and PLCL respectively, and in 
Fig. 6 versus CAPE. Figures 3-5 all show substantial 
scatter, but the moderate improvement of the correlation 
coefficients in Fig. 4 and 5 over that in Fig. 3 is reflected 
in the more pronounced tapering of the scatter toward 
the lower end of the ranges for TLCL and PLCL in 
comparison with ZMLT. Figure 6 shows only a very 
weak positive correlation between IF and the secondary 
predictor CAPE. The poor correlation in Fig. 6 indicates 
that the large improvements from the univariate to the 
bivariate predictions of IF in Table 2 for ZMLT or TLCL 
as primary predictor are almost entirely due to the 
correlations between either of them and CAPE, in light 

of the equation for 
  
R ZXY

2
. 

 
 Analogous scattergrams to those for IF are plotted 
for RF in Figs. 7-10, which are otherwise the same as 
Figs. 3-6 in the same order. Although Table 2 and the 
corresponding numerical information in Figs. 7-9 show 
the RF has stronger correlations with each primary 
predictor than IF (albeit positive instead of negative), no 
importance can be attached to the apparently steeper 
regression lines in those diagrams versus Figs. 3-5 
because the vertical scales in Figs. 7-9 are stretched 
twofold to fill out most of the vertical extent of the plot 
with the generally smaller values of RF versus IF, Figure 
10 shows only a tiny negative correlation between RF 
and CAPE, much weaker yet than the small positive 
correlation between IF and CAPE in Fig. 6, so the 
deduction about the main cause of the superior bivariate 
versus univariate predictions of IF holds even more 
strongly for RF.  
 
5.3 Scattergrams for “Predicted” versus 

“Observed” Hydrometeor Mass Fractions 
 
 Figure 11 superimposes two scattergrams and the 
associated regression lines for the predicted versus 
observed values of the predictand IF, one for the 
univariate prediction versus ZMLT (red triangles and 
regression line) and the other for the bivariate prediction 
versus ZMLT and CAPE (black dots and regression 
line), also showing the correlation coefficients for both 
scattergrams. Figures 12 and 13 do likewise, but using 
TLCL and PLCL respectively as the primary predictor 
instead of ZMLT. Analogous plots to Figs. 11-13, but for 
RF instead of IF, are shown in Figs. 14-16. 
 
 The mode of plotting in Figs. 11-13 and Figs. 14-16 
differs fundamentally from Figs. 3-5 and Figs. 7-9 
respectively. In the previous plots the points represent 
the observed predictand versus the observed predictor. 
But now, the intent is to use two scattergrams in a single 
diagram to gauge how well the predictions (the 
regression analyses whose correlation coefficients are 
displayed in Table 2) replicate the observations (the 
output from WISCDYMM) for the predictand in both the 



univariate and bivariate frameworks, as intimated in 
section 4.3. As the ideal standard against which to 
compare both scatter patterns, the blue diagonal line in 
each of Figs. 11-16 represents a perfect prediction, with 
a correlation coefficient of unity.  
 
  As a bonus, this approach avoids the awkward 
visual issues inherent in using a flat medium to try 
displaying a bivariate regression fit in predictand-versus-
predictors mode. Conceptually, bivariate regression 
entails a three-dimensional scattergram and associated 
regression plane, but on a flat medium the best that one 
can do is a two-dimensional projection of such a display, 
collapsing much of the perspective. 
 
 In each of Figs. 11-16, one salient feature is that 
the correlation coefficients for the predicted versus 
observed values of the predictand have the same 
magnitudes as for the observed predictand versus the 
predictor(s), for both the univariate and bivariate 
predictions. This equality of magnitudes is not 
coincidental, and turns out to be valid for any 
combination of predictand Z and sole predictor X in 
univariate analysis, i.e., 
 

    
rZ*Z = rZX  

 
as well as any combination of predictand Z and two 
predictors X and Y in bivariate analysis, i.e., 
 

    
rZ*Z

2
= RZXY

2

 
 
The proofs of these equalities are omitted here. In short, 
they entaill invoking the equations for the regression line 
in the univariate prediction, or the regression plane in 
the bivariate prediction, with all mean values subtracted 
out as in Panofsky and Brier (1958), and from there 
deriving the equalities via some algebra, easily in the 
former case and much more laboriously in the latter. 
 
 With ZMLT or TLCL as primary predictor, the 
improved quality of the bivariate predictions over their 
univariate counterparts is evident in Figs. 11-12 for IF, 
and in Figs. 14-15 for RF. In each of these diagrams, 
the distribution of points shifts so as to appreciably 
ameliorate the obvious univariate limitations of 
overpredicting the observed HMF toward the low end of 
its distribution and underpredicting it toward the high 
end. These benefits are, of course, also reflected in the 
steeper regression line for the bivariate versus 
univariate fit, tilting it closer to the blue perfect-prediction 
line even though the scatter is not dramatically 
lessened. In Figs. 14-15, many of the overpredicted rain 
fractions extend into the lower midrange, which is also 
improved in the bivariate prediction. Outliers may not be 
improved, however, as exemplified by the two smallest 
observed rain fractions in Fig. 15; the univariate 
regression underpredicts them, and the bivariate 
regression worsens their underprediction. 
 

 In the two figures with PLCL as primary predictor, 
Fig. 13 for IF and Fig. 16 for RF, the meagerness of the 
improvement for bivariate versus univariate regression 
is starkly evident, especially in the latter plot where the 
impact is all but nonexistent.  Both figures show very 
little steepening of the regression line and 
correspondingly little shift of the point distribution.  The 
lower half of the IF spread in Fig. 13 is grossly 
overpredicted, especially toward the end, while Fig. 16 
shows overprediction of most low-end and many 
midrange RF values with gross underprediction of high-
end values. Though all four correlation coefficients in 
Figs. 13 and 16 are near or somewhat above 0.6 and 
thus far from trifling, these two figures serve as a caveat 
that substantial prediction errors over a major portion of 
a predictand’s range can still lurk behind an ostensibly 
respectable linear correlation. 
 
6. CONCLUSIONS  
 
 1) As a sole predictor of HMF’s among the six 
indices under consideration, TLCL performs 
considerably better ZMLT, except when predicting hail. 
 
 2) TLCL is also dramatically superior jointly with 
CAPE than alone, for each predictand except hail, 
performing especially well for rain and only slightly less 
so for cloud ice and total ice.  
 
 3) Except for snow and rain, PLCL is slightly 
better yet as sole predictor than TLCL. 
 
 4) However, PLCL is far less superior as a joint 
predictor with CAPE than it is alone, unlike for either 
ZMLT or TLCL as the primary predictor, and barely at all 
when predicting rain or snow. This ineffectiveness 
springs largely from a near-zero correlation between 
CAPE and PLCL, versus a solidly fair correlation 
between CAPE and each of the other two primary 
predictors.  
 
 5) In fact, the bivariate skill indices are lower for 
PLCL versus ZMLT as the primary predictor for three of 
the six HMF’s (rain, hail, total ice). 
 
 6) The results are qualitatively similar for the 
warm-season subset of the WISCDYMM storm 
simulations versus the full set despite some differences, 
mostly minor, in the precise magnitudes of 
corresponding correlation coefficients.  
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Fig. 1. Global map projection marking the locations of the 79 rawinsounding stations listed in Table 1 of SHW08, 
using red dots to represent the 62 stations associated with one thunderstorm case and blue dots to represent the 17 
stations associated with multiple cases.  
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Fig. 2. Distributions of 60-120 min time-averaged ice fractions for the simulated thunderstorms from the four best-
sampled climate zones [temperate continental with warm summers (Temp Cont), humid subtropical (Hum Subtrop), 
Mediterranean (Medit) and humid tropical (Hum Trop)] plus the “High Plains” stations in the dry/steppe and boreal 
climate zones. Just above the bottom of a panel, each bold-faced number is the mean ice fraction for all cases in the 
corresponding category, and the number of cases in that category is shown in parentheses underneath. Left panel: 
84 cases from the full set of 105. Right panel: 47 cases from the warm-season subset of 64. 
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Fig. 3. Scattergram and least-squares regression line 
with corresponding correlation coefficient r for 
“observed” (WISCDYMM-generated) ice fraction IF as 
predictand versus ground-relative melting level ZMLT 
as predictor, for all 105 thunderstorm cases. 
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Fig. 4. Same as Fig. 3, but for cloud-base 
temperature (TLCL) as predictor. 
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Fig. 5. Same as Fig. 3, but for cloud-base pressure 
(PLCL) as predictor. 
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Fig. 6. Same as Fig. 3, but for CAPE as predictor. 
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Fig. 7. Same as Fig. 3, but for “observed” 
(WISCDYMM-generated) rain fraction RF as 
predictand instead of IF.  
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Fig. 8. Same as Fig. 4, but for “observed” 
(WISCDYMM-generated) rain fraction RF as 
predictand instead of IF. 
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Fig. 9. Same as Fig. 5, but for “observed” 
(WISCDYMM-generated) rain fraction RF as 
predictand instead of IF. 
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Fig. 10. Same as Fig. 6, but for “observed” 
(WISCDYMM-generated) rain fraction RF as 
predictand instead of IF. 
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Fig. 11. Scattergrams and least-squares regression 
lines with corresponding correlation coefficients (r), for 
“predicted” (linearly regressed) versus “observed” 
(WISCDYMM-generated) ice fraction IF, for all 105 
thunderstorm cases. Triangles and regression line in 
red represent results from univariate “prediction” of IF 
versus ground-relative melting level ZMLT, while dots 
and regression line in black represent results from 
bivariate “prediction” of IF versus ZMLT and CAPE. 
Blue diagonal line represents a perfect prediction with 
r = 1.00. 
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Fig. 12. Same as Fig. 11, but for cloud-base 
temperature TLCL instead of ZMLT.  
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Fig. 13. Same as Fig. 11, but for cloud-base pressure 
PLCL instead of ZMLT. 
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Fig. 14. Same as Fig. 11, but for rain fraction RF 
instead of IF. 
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Fig. 15. Same as Fig. 12, but for rain fraction RF 
instead of IF. 
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Fig. 16. Same as Fig. 13, but for rain fraction RF 
instead of IF. 



Table 1. Breakdown of counts for the 79 rawinsounding stations and 105 thunderstorm cases in Table 1 of 
SHW08 among the 10 climatic zones listed therein. 
 

Climatic zone Number 
of stations 

Number 
of cases 

Temperate continental, warm summer 13 20 
Humid subtropical 16 23 
Mediterranean 13 15 
Humid tropical 12 19 
Temperate continental, cool summer 4 4 
Dry/steppe 7 8 
Boreal 3 5 
Polar, tundra 4 4 
Temperate oceanic 3 3 
Dry/desert 4 4 

 



Table 2. Linear correlation coefficients between selected 60-120 min time-averaged domain-
integrated hydrometeor mass fractions as predictands and selected initial environmental indices 
as predictors, using abbreviations explained in the text, for the full set of 105 worldwide 
thunderstorm simulations. 
 
 Predictand 
Predictor(s) IF CIF HF SF CWF RF 
ZMLT -0.475 -0.458 -0.408 -0.328 +0.159 +0.608 
ZMLT, CAPE*  0.674 0.648 0.599 0.434 0.542 0.720 
TLCL -0.555 -0.576 -0.397 -0.510 +0.235 +0.679 
TLCL, CAPE*  0.810 0.826 0.628 0.673 0.647 0.844 
PLCL -0.597 -0.613 -0.453 -0.507 +0.405 +0.635 
PLCL, CAPE*  0.638 0.650 0.502 0.520 0.569 0.641 
*Versus multiple predictors, correlation coefficients possess magnitude but no sign. 
 
 
Table 3. Same as Table 2, except for the subset of 64 worldwide thunderstorm simulations for 
warm months only. 
 
 Predictand 
Predictor(s) IF CIF HF SF CWF RF 
ZMLT -0.454 -0.440 -0.336 -0.405 +0.132 +0.602 
ZMLT, CAPE* 0.691 0.638 0.654 0.444 0.572 0.723 
TLCL -0.535 -0.554 -0.320 -0.596 +0.178 +0.694 
TLCL, CAPE* 0.852 0.832 0.701 0.705 0.666 0.891 
PLCL -0.601 -0.621 -0.452 -0.518 +0.348 +0.673 
PLCL, CAPE* 0.683 0.682 0.601 0.519 0.591 0.691 
*Versus multiple predictors, correlation coefficients possess magnitude but no sign. 
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