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1. INTRODUCTION.  
For tornadic thunderstorms one can estimate the 
relationship between vorticity and the length scale 
using Doppler radar data. Case studies have 
indicated that there may be values of exponents 
that are strongly correlated with thresholds of 
tornado activity.  In a recent paper, Cai (2005) 
defines the pseudovorticity by 
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ζ pv = ΔV /L  where 
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ΔV = (Vr )max − (Vr )min  is the difference between 
the maximum and minimum radial velocity of the 
mesocyclone (rotating updraft) and L is the 
distance between them.  Cai filtered the data from 
the highest resolution to the smallest resolution 
determined by the diameter of the mesocyclone. 
He filtered the radar data to obtain data sets 
corresponding to different length scales (  is the 
finest resolvable scale of the filtered radar data).  
By filtering, he obtained data points 
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(ln(ε),  ln(ζ )).  He plotted the points and obtained 
the best linear fit.   Caiʼs study comparing mobile 
Doppler radar data from tornadic and non-tornadic 
storms indicates that the steeper slopes (smaller 
negative values) are indicative of tornadic storms.  
As those mesocyclones that produced tornados 
become stronger approaching tornadogenesis the 
slope of the line decreased.  Cai found the 
threshold for strong tornados was slope m = -1.6.  
For tornadic mesocyclones, this suggests a power 
law of the form, 

€ 

ζ ∝ r−b , where r is the radius of 
the vortex.  Cai observed that the exponent can be 
thought of as measuring a fractal dimension 
associated with the vortex.  For dimension 
associated with the vortex.  For high-resolution 
mobile Doppler radar data, there has been some 
attempt to interpret this as a giving a power law for 
the drop-off of the velocity as a function of the 
radius of the vortex.  Using Mathematica we  
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revisited Serrinʼs model (Serrin 1972) and 
attempted to find solutions to the Navier Stokes 
equations in spherical coordinates, with 
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rb   where 
b is not necessarily -1.  We also considered 
solutions to the Euler equations as well.  Recent 
studies of radar data (Markowski 2008) and 
numerical simulations [Straka 2007) have 
produced arching vortex lines in the rear flank of 
supercell storms.  These appear to be correlated 
with tornado genesis. As more and more vortex 
lines enter this region, viscous interactions 
between neighboring vortex lines would lead to 
mergers.  This should also lead to a strengthening 
of the vortex and increase in the vorticity as well.  
Several theories have been given for the 
production of the arching vortex lines (Markowski 
2008; Straka 2007). One theory involves the 
production of vorticity along the edge of the rear 
flank gust front.  These vortex lines are captured 
by the updraft and tilted vertically. As this tilting 
occurs, stretching creates a pressure drop in the 
near ground vortex that draws air down and pins 
the vortex to the ground.  In a second theory the 
origin of the vorticity is in the shear between the 
mesocyclone updraft and the rear-flank downdraft.  
The vortex line is pulled in opposite directions, up 
by the updraft into the mesocyclone, and down to 
the ground on adjacent sides by the downdraft 
creating an arching vortex. It seems reasonable to 
assume a combination of these two processes 
should be present, with a reconnection of vortex 
lines produced by the two different processes.  
However we doubt tornados or the processes that 
give rise to them discriminate against vorticity 
because of its origin, therefore there may be other 
sources as well. We believe that the fractal 
dimension of 1.6 that Cai found in his study and 
have also been observed in several other studies 
comes from the roll-up in shear regions due to 
Kelvin-Helmholtz instability. 
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2. TORNADOGENESIS 
Observational analysis of videos of the 
tornadogenesis phase in large diameter tornados 
forming under low cloud bases, suggests the 
arching vortex lines which enter the developing 
tornado make a partial revolution about the 
ambient tornado vortex before ʻkinkingʼ.  This 
ʻkinkingʼ is necessary to conserve energy as the 
vortex stretches and/or interacts with other 
vortices (Chorin 1994).  In this process some 
energy is transmitted to much smaller scales, the 
so-called inertial range, beginning the Kolmogorov 
cascade to the viscous range and then dissipating 
as heat.  But much energy is transmitted to the 
ambient vortex as kinetic energy of the flow and 
this increases the vorticity of the tornado. As more 
and more vortices successively enter the 
developing tornado this process repeats itself 
many times gradually increasing the vorticity of the 
tornado vortex.  This raises the vorticity of the 
ambient vortex (assuming the vortex lines are 
produced uniformly) eventually achieving quasi-
equilibrium with its environment. This process 
transfers energy from the smaller scales to the 
larger scales (cascades). As more vortex lines 
enter the ambient tornado vortex, large vortices 
tend to form; the stronger vortices at the core and 
slightly weaker vortices wrapping around them.  
This could manifest itself as multiple vortices or as 
a large single vortex. 
 
In a study of Kelvin-Helmholtz instability, Baker 
and Shelly (1990), considered a thin vortex layer 
of thickness h in a two dimensional model.  Above 
the layer and below the layer the fluid flowed in 
opposite directions.  As the flow proceeded the 
region between the two layers rolled up into a 
double-branched spiral shaped vortex, with an 
approximately elliptical cross-section (Kirchhoff 
ellipse) at its core.  They identified a relationship 
between the thickness of the vortex sheet, h, and 
the cross sectional area of the vortices, A. They 
found A scales like  as h goes to 0, 
specifically, A = 8.58 h .  They observed the 
roll-up eventually changes the structure of the flow 
so that no new vorticity gets added to the core of 
the roll-up.  They also comment that once the 
cores have formed they will interact with one 
another and in some cases form larger structures. 
From our perspective, the two dimensional model 

gives the cross sections of the vortex lines (tubes) 
that eventually arch and amalgamate together to 
form the tornado.  For persistent shear layers, 
after a sequence of roll-upʼs, a sequence of new 
vortices would form.   The new vortices would lie in 
a linear sequence in a thin vortex layer that would 
itself have local roll-ups just as the earlier layer 
did.  Locally, the vortices from the first roll-up 
would wrap-around each other and roll-up into a 
new vortex.  Thus forming a sequence of new-
generation roll-up vortices made up of roll-upʼs of 
earlier generation roll-up vortices.  By the Baker 
and Shelley result, the new roll-up vortices would 
satisfy the condition, A scales like  were h 
is the thickness of the new layer. If the above 
process occurs repeatedly the result would be a 
self-similar fractal vortex.  The vortex thus 
produced would be geometrically self-similar and 
would have the property that A scales like 

  If the thin vortex layer bends, the layer 
locally looks like a plane and the above roll-up 
process will continue.  This process creates 
structure in the cross-sections of the vortices that 
lie within the vortex layer.  We assume that as the 
vortex layer arches and is lifted by the updraft and 
pinned or pulled down by the downdraft, these 
vortex lines within the vortex sheet become the 
arching vortex lines.  As the vortex layer wraps up 
it begins to form the tornado vortex which 
gradually strengthens as the roll-ups continue.  
One can regard this process as an energy 
cascade from smaller to larger dimensions.  
 
Another possible source for the fractal dimension 
of a tornadic vortex is the fractalization of vortex 
lines due to intense stretching by the updraft. 
While fractalization of vortex-lines has not been 
observed, turbulence theory suggests as the 
vortex lines are stretched they kink, becoming 
fractalized (Chorin 1994).   This process acts 
along the axis of the vortex line.   
 
If the above two processes occur simultaneously 
we may approximate this with a compound 
process by breaking the processes up into an 
alternating sequence, first the roll-up process then 
the stretching process, etc.  We hypothesis that 
the above roll-up processes take place at many 
different scales, including within the tornado vortex 
itself.  
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3. VORTEX GASES The interaction of large 
numbers vortices in two and three-dimensional 
space has been studied by modeling the vortices 
as part of a vortex gas.    This theory has its 
origins in the works of Helmholtz [H] and Kelvin [K] 
in the 1800ʼs.   The theory is the analogue of the 
classical statistical mechanics of gases, which 
attempts to explain the macroscopic behavior of 
gases by using the statistics of microscopic 
modeled behavior of molecules.  In the vortex gas 
case the molecules are replaced by vortices.   
These could be arching vortex lines (tubes).  Just 
as in the case of gases there is a notion of entropy 
and a notion of temperature. Onsager (1949) first 
suggested the notion of temperature for vortex 
gases.  In this theory, negative temperatures are 
hotter than positive temperatures.  Vortices with 
negative temperatures are smooth.  Those with 
positive temperature are kinked.  Those with 
infinite temperature are fractal. The infinite 
temperature is between positive and negative 
temperature.  The closer a negative temperature is 
to zero the warmer it is.  From this point of view, a 
tornadic vortex that begins with kinked up or fractal 
vortices in it and gradually over time forms into a 
cylindrical vortex with smooth vortices, would be 
heating up.  Initially smooth vortices that kink up 
are cooling down.  This is what happens to 
vortices that are stretched.  The stronger (hotter) a 
vortex is, the more resistant it is to kinking up 
when it is stretched.  For a discussion of these 
ideas see Chorin (1994, 1993).  As smooth 
slender vortices enter the developing tornado 
vortex, they are being stretched and are cooling 
down.  They kink up, and in doing so they lose 
energy in the form of kinetic energy to the mean 
flow of the developing tornado. This adds to the 
internal energy of the tornado. While the smooth 
slender vortex “cools” down the ambient tornado 
“heats” up.  As this process repeats itself many 
times the tornado eventually achieves quasi-
equilibrium with its environment. 
 
Lions and Majda (2000) developed a three-
dimensional equilibrium statistical mechanics 
theory for N vortex filaments that allows self-
stretching.  Each of N filaments has a 
parameterization of the form  
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(xi(σ,t),yi(σ,t)),  
where  parameterizes the asymptotic center of 
the filament.  They found a Hamiltonian system 
governing the behavior of the vortices, consisting 

of several terms, which we simplify to two terms: a 
self-stretch term, 
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H1  
and an interaction term, 
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H2    
If we assume that there are small intervals of time 
and local regions in space during which 
equilibrium is achieved then we may use the Lionsʼ 
and Majdaʼs theory locally in space and time. Thus 
for the non-linear Hamiltonian we obtain two sets 
of equations: one part containing the stretching 
term,  
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H1  
and the other part containing an interaction term,   
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H2   
The governing equations for the stretching part 
are,    

 

 
 

And for the interaction part, 
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dxi
dt

=
∂H2

∂yi
,  dyi
dt

=
∂H2

∂xi  
The solution, 
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Xt  
for the combined system,   
    

      

€ 

dxi
dt

=
∂H
∂yi

,  dyi
dt

=
∂H
∂xi

,   where H = H1 +H2

can be expressed in terms of the solutions for the 
stretching part, 
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X1,t  
and for the interaction part,  
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X2,t  
This can be done using the Trotter product 
formula,   
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Xt  =  lim
n→∞

(X1,t / n  X2,t / n )n (x0,y0),
                                                                                                                                                           

where the power denotes composition and   
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(x0,y0) 
 is the initial condition. Naively, the roll-up 
discussed above is due to the    
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H1 
term, and the stretching is due to the 
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H2  

term.   
 
The above limit of compositions can be thought of 
as the alternating sequence of roll-up process 
followed by stretching processes repeated many 
times. Idealy we would want to incorporate 
stretching due to the updraft and perhaps other 
effects in the as well in the above equation. 
4.CAIʼS POWER LAW  
The connection between tornadoes and nearly 
continuously (periodically) produced arching vortex 
lines is that the vortex lines stir or pump the 
tornado and increase the vorticity.  How frequently 
vortex lines are produced, their strength, and the 
stretching of the vortices determine the eventual 
strength of the tornado.  This can be seen from the 
point of view of the vortex gas theory above. We 
assume the vortices are all of the same sign 
(rotation), as the arching vortex lines tend to 
segregate themselves with the positive and 
negative collections grouping together, the positive 
parts forming the cyclonic tornado.  
 
We now give a heuristic argument to support Caiʼs 
power law for strong tornados,  
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ζ ∝ r−1.6 .   
From Kelvinʼs Circulation Theorem vorticity times 
the cross-sectional area of a vortex tube is 
constant for Eulerian barotropic flows. Hence,  
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ζ =
C
A

 

were A the cross sectional area of the vortex.  
Recent numerical and radar studies of tornadic 
storms suggest that vortex lines produced on the 
rear flank gust front of a supercell thunderstorm 
(captured by the updraft) form arches to produce 
counter-rotating vortices. The vortex lines could 
also be produced by the shear between the 
mesocyclone and adjacent downdrafts, and then 
pulled in opposite directions by the updraft (into 
the mesocyclone and up) and downdrafts (to the 
surface).   A result of a numerical study of Kelvin-
Helmholtz instability by Baker and Shelley (1990), 
identifies a relationship between the thickness of 
the vortex sheet h and the cross sectional area of 
the vortices A. They found that A scales like 
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O(h1.55)  as h goes to 0. Caiʼs paper suggests that 

the tornados are fractal. If the arching vortex lines 
combine to form the self-similar (fractal) vortex, the 
self-similarity of the vortex suggests the largest 
scales are similar to the smallest scales.  
Therefore, 
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ζ  scales like 
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O(h1.55) .  

 
5. GEOMETRIC SELF SIMILARITY 
We have given an argument supporting Caiʼs 
power law for strong tornados. Tornados appear to 
have not only self-similarity of their vorticity, but 
they also appear to have geometric self-similarity.  
This appears in Doppler radar and reflectivity data 
(Bluestein 2000, Nova 2004) and in some high-
resolution numerical simulations of tornadic storms 
(Nova, 2004; Adlerman 2002). The power law 
suggests a geometric self-similarity in the vortex 
structure as well.  In the discussion above, the 
doubly branched spiral that results from the roll up 
in the thin vortex layer, that gives rise to the vortex 
lines that become the arching vortex lines, is 
similar in shape to the hook echo that is 
associated with the mesocyclone or tornado 
vortex.  In two dimensions energy can cascade 
from smaller scales to larger scales, as tornados 
and the roll-up vortex tubes have a nearly two-
dimensional structure one might expect the small 
scales to have a strong influence on the formation 
of the larger scales. The dimension of the 
geometric vortex can be thought of as 1.6, by the 
Baker and Shelley result. The initially horizontal 
vortex sheet containing the vortex lines tilts into 
the vertical.  As the vortex lines arch into the 
vertical, the sheet then rolls up into the hook echo 
shaped object associated with the mesocyclone.  
As the vortex lines role along it they group 
together into the tornado vortex or pre-tornado 
vortex.  There is also evidence of this in photos 
(Grazulis 1997, p. 1349). In a one-dimensional 
study of the roll up of vortex sheets, Chorin (1973) 
showed that vortex sheets consisting of 
cyclonically rotating vortices rolled up into a 
cyclonic vortex. (The roll up in Chorin (1973) 
should be interpreted as the roll up in Adlerman 
(2002).)  Vortices were spaced along a segment 
representing the vortex sheet. The rolled up vortex 
sheet resembled the hook echo region of a 
supercell thunderstorm.  With vortices of opposite 
sign grouped and placed in the different halves of 
the segment the vortex sheet rolled up into a 
cyclonic, anti-cyclonic couplet.  This resembled the 
radar reflectivity couplets that suggest arching 



vortex lines.  The initial arrangement of the 
vortices is linear along the vortex sheet, as the roll-
up takes place the vortices fill out in a circle-
bounded region.  The circle-bounded region would 
be the region where it would be appropriate to use 
the vortex gas theory. In the linear region one 
might use a shift on a finite alphabet to study the 
vortex sheet.  The coding of a fractal into the shift 
on a finite alphabet is used in the study of fractal 
dimension as presented by Edgar (1992).  This is 
a common way to study dynamical systems.  In 
Edgarʼs book he studies the fractal dimension of 
the boundary of the Heighway dragon fractal, the 
dimension is ~1.52.  This fractal has a crude 
resemblance to radar reflectivity image of the hook 
echo region of a supercell, the hooks on it 
representing the successive vortices in the vortex 
sheet, as in (Nova 2004; Chorin 1994; Adlerman 
2002).  On can think of a 2 dimensional radar 
image as a Poincare section of the supercell 
dynamical system.  One often studies the 
dynamical systems associated with Poincare 
sections using discrete dynamical systems.  These 
systems often take the form of shifts on finite 
alphabets, like the system studied in Edgars book.  
There are several other “dragon” fractals that have 
a resemblance to the radar reflectivity image of the 
hook echo region of a supercell thunderstorm. 
 
6. SUCTION SPOTS 
The vortex line theory we have used here has 
been used to study the interaction of pairs of 
cyclonically rotating vortices in the half-plane.  The 
paths of the pairs of interacting vortices (Marchioro  
1994, p. 53) form the same type of pattern as the 
tracks of overlapping suction spots moving through 
fields as observed by Fujita and others from the air 
(Grazulis 1997, p. 1379).  One can identify the two 
counter-rotating (anti-cyclonic) mirror vortices in 
the other half plane as the other ends of the 
arching vortex lines from the original pair. These 
would be rotating in the in the opposite orientation.   
 
7. CONCLUSIONWe believe that the fractal 
dimension of 1.6 that Cai found in his study and 
has also been observed in several other studies 
as well comes from the roll-up in shear regions 
due to Kelvin-Helmholtz instability.  The 
discrepancy between the 1.6 of Cai and 1.55 of 
Baker and Shelley could be due to additional 
contributions from stretching of the vortex and/or 
fractalization due to the Kolmogorov cascade in 

the inertial range.  We also believe that the model 
discussed above can unify and explain many of 
the different phenomena associated with tornados 
and tornadogenesis (Davies-Jones ).                                  
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