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1.  INTRODUCTION 
 
Numerical weather prediction and ensemble forecasting 
are considered important components of the process of 
issuing severe weather watches and warnings in the 
future (Stensrud et al 2009).  However, considerable 
challenges remain in understanding and predicting the 
initiation and evolution of high impact convective 
weather events.  Efforts to produce ensemble forecasts 
on the scale of convective storms with fully complex 
mesoscale models have just begun (e.g., Kong et al. 
2007, Lei et al. 2009), and there are still significant 
opportunities for improving guidance from such storm-
scale ensemble forecasts, particularly during the first few 
hours of the forecast.   
 
To help us evaluate current and near-future capabilities 
in storm-scale ensemble prediction, we have developed 
an ensemble-based data-assimilation and prediction 
system with both mesoscale and storm-scale 
probabilistic analyses and forecasts, employing the 
Weather Research and Forecasting (WRF) model 
(Skamarock et al. 2008) and Data Assimilation Research 
Testbed (DART) tools (Anderson and Collins 2007, 
Anderson et al. 2009).  We have taken advantage of 
previous experience with mesoscale (e.g., Fujita et al. 
2007, Torn and Hakim 2008) and storm-scale (e.g., 
Aksoy et al. 2009, 2010; Dowell and Wicker 2009) 
ensemble-based data-assimilation and prediction 
systems when “putting the pieces together” for the 
current system.  We are studying a retrospective period 
of 4-17 June 2009 with 3-hourly mesoscale (horizontal 
grid spacing Δx=15 km) ensemble analyses with 
continuous cycling on a continental United States 
(CONUS) domain (Fig. 1a), which provides initial and 
boundary conditions for regional storm-scale (Δx=3 km) 
analyses and forecasts centered near the Colorado 
Front Range (Fig. 1b).  On the storm-scale domain, 
continuous assimilation of Doppler-velocity and “no-
precipitation” (Aksoy et al. 2009) observations for one 
hour precedes ensemble forecasts out to six hours. 
 
The Front Range domain supports the interest in the 
Short-Term Explicit Prediction (STEP) program at the 
National Center for Atmospheric Research (NCAR) in 
predicting convection initiation and evolution in the 
vicinity of complex terrain.  The early-mid June 2009 
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retrospective period corresponds to a period of active 
weather and data collection by the Verification of the 
Origins of Rotation in Tornadoes Experiment 2 
(VORTEX2).  Among several VORTEX2 test cases 
selected for detailed study, two are discussed here:  the 
5 June 2009 Goshen County, WY tornadic supercell and 
the 11-12 June 2009 southeast CO nontornadic 
supercells. In subsequent sections, we describe the 
components of the WRF-DART mesoscale and storm-
scale ensemble data-assimilation and prediction system 
and discuss initial results. 
 

 
(a) CONUS domain 
 

 
(b) Front Range domain 
 
Figure 1.  Surface elevation (shading; m MSL) in the 
WRF model in the (a) CONUS domain (Δx = 15 km) and 
(b) Front Range domain (Δx = 3 km).   
 



2.  MESOSCALE DATA ASSIMILATION 
 
Data-assimilation and forecasting experiments on both 
the CONUS and Front Range domains use WRF-ARW 
version 3.1.1, with bug fixes plus enhancements to 
output additional diagnostic fields (radar reflectivity, 
hydrometeor fall velocity, updraft helicity, etc.).  The 
WRF model was configured as indicated in Table 1.  To 
facilitate comparison of our results with those from real-
time storm-scale forecasting systems (Weiss et al. 
2010), we intentionally configured the WRF model 
similarly.  For example, the Front Range domain uses 
the same horizontal grid spacing, vertical levels, PBL 
scheme, precipitation-microphysics scheme, and 
radiation scheme as NOAA’s High-Resolution Rapid 
Refresh (HRRR) model. 
 
Model Parameter CONUS Front Range 

Horizontal grid Δx = 15 km 
369 × 297 points 

Δx = 3 km 
301 × 301 points 

Vertical grid 51 levels 
top level 65 mb 

51 levels 
top level 65 mb 

PBL scheme MYJ MYJ 
Land surface NOAH NOAH 
Microphysics Thompson Thompson 

Convective scheme Kain-Fritsch none 
Radiation RRTM (longwave) 

Dudhia (shortwave) 
RRTM (longwave) 
Dudhia (shortwave) 

Table 1.  Summary of WRF model (Skamarock et al. 
2008) configuration for the CONUS and Front Range 
domains. 
 
The 50-member mesoscale (Δx=15 km) WRF ensemble 
mean was initialized with the Global Forecast System 
(GFS) analysis at 1200 UTC 31 May 2009.  The initial 
ensemble and boundary conditions were then produced 
from random perturbations added to the ensemble mean 
using the WRF variational data-assimilation system 
(WRF-Var) “CV3” option.  Boundary conditions for 
subsequent analysis times through 0000 UTC on 18 
June 2009 were drawn from similarly perturbed GFS 
analyses valid every 6 hours, with interpolated 
intermediate boundary files every 3 hours.  While it 
would have been more appropriate to use 3- and 6-h 
forecasts for the mesoscale boundary conditions, this 
simplification was not expected to have a significant 
impact on the storm-scale domain, which is well within 
the interior of the mesoscale domain.  After several days 
of continuous cycling, the mesoscale ensemble does not 
depend significantly on the GFS initial conditions at 1200 
UTC 31 May, but the GFS boundary conditions remain 
relevant throughout the period of interest.  Adaptive prior 
spatially- and temporally-varying covariance inflation 
(Anderson 2009) was also used to maintain ensemble 
spread during the 18-day cycling period.  Thus, sources 
of spread for our mesoscale ensemble are adaptive 
inflation, WRF-Var initial and boundary condition 
perturbations, and WRF model processes. 
 
The DART software is used to assimilate conventional 
“mesoscale observations” into the WRF ensemble.  This 
community tool is a parallel implementation of an 
ensemble adjustment Kalman filter adapted for 

geophysical data assimilation.  DART works with various 
models, including the WRF model (Anderson and Collins 
2007; Anderson et al. 2009).  Ensemble Kalman filters 
use the statistics of a forecast ensemble to estimate the 
background-error covariances needed for data 
assimilation.  Results of EnKF data assimilation provide 
a natural starting point for ensemble forecasting. 
 
Most of the assimilated observations for the mesoscale 
domain come from NOAA’s Meteorological Assimilation 
Data Ingest System (MADIS): 
• radiosonde westerly wind component (u), southerly 

wind component (v), temperature (T), dewpoint (Td), 
and altimeter setting (palt); 

• surface u, v, T, Td, and palt; 
• marine (buoy) u, v, T, Td, and palt; and 
• aircraft u, v, T, and Td. 
Additional observations were drawn from NCEP BUFR 
archives:  satellite cloud-track winds u and v.  The 
observations (approximately 80,000 observations per 
assimilation cycle) were assimilated every 3 hours. 
Prognostic variables that were updated are the 3 wind 
components; geopotential height; potential temperature; 
perturbation dry air mass; mixing ratios of water vapor, 
cloud, rain, ice crystals, snow, and graupel/hail; and 
intercept parameters of ice crystals and rain.  The 
localization half width was 320 km (4 km) in the 
horizontal (vertical), and the localization function was the 
5th order correlation function from Gaspari and Cohn 
(1999).  Observation errors are specified similarly to 
those used by Torn and Hakim (2008).  Observation 
likelihoods more than 3 ensemble standard deviations 
away from the prior ensemble mean are not assimilated. 
 

 
 
Figure 2.  Surface observations (temperature in °F, 
dewpoint in °F, and wind in kt indicated in red, in green, 
and by barbs) at 2100 UTC 5 June 2009 (obtained in 
real time from www.rap.ucar.edu/weather/). 



 
(a) Ensemble-mean water-vapor mixing ratio (contour 
interval 1.0 g kg-1) and horizontal winds (vectors). 
 

 
(b) Ensemble standard deviation of water-vapor mixing 
ratio (contour interval 0.2 g kg-1). 
 
Figure 3.  Prior ensemble (3-h forecast) fields on the 
CONUS (Δx=15 km) grid at the lowest model level 
(approximately 8 m AGL) at 2100 UTC 5 June 2009. 
 
An example case from 5 June 2009 is illustrated in Figs. 
2 and 3.  The surface map in the afternoon (Fig. 2) 
shows upslope southeasterly flow and mid 50 °F 
dewpoints on the high plains of northeast CO, the NE 
panhandle, and southeast WY.  Model fields (Fig. 3) are 
for the 3-h ensemble forecast from 1800 to 2100 UTC 5 
June, following cycling of the mesoscale ensemble 
continuously for nearly 5 days.  Ensemble-mean water-

vapor mixing ratio and horizontal winds at the lowest 
model level fairly resemble the observed surface pattern.  
The moist axis from west-central KS into northwest KS, 
through northeast CO, into the NE panhandle and 
southeast WY can be seen on the surface plot (Fig. 2) 
and in the WRF-DART ensemble-mean forecast (Fig. 
3a), with the latter appearing to be smoother.  Notably, a 
corridor of relatively low ensemble spread (which is 
equated to high confidence in an EnKF system) is 
forecast within this moist axis while relatively high 
spread (equated to low confidence) is indicated along 
the gradient on the southwest side of moist axis.  
 
 
3.  STORM-SCALE RADAR-DATA ASSIMILATION 
 
For our “radar” storm-scale ensembles, we define t0 as 
the time at which a storm-scale ensemble forecast 
begins. Initializing this ensemble begins with the 
mesoscale ensemble analysis at t0 − 3 h, from which a 
9-h mesoscale ensemble forecast is produced to provide 
boundary conditions for the duration of the storm-scale 
analysis and forecast window (t0 − 3 h to t0 + 6 h). Initial 
conditions for the nested storm-scale ensemble are 
made from one-way nesting from the 15-km CONUS 
(Fig. 1a) forecast valid at t0 − 1 h, to the 3-km Front 
Range domain (Fig. 1b), with initial and boundary 
conditions drawn from a consistent mesoscale ensemble 
member. 
 
Radar data are assimilated from 6 Weather Surveillance 
Radars - 1988 Doppler (WSR-88D) in the central high 
plains:  KCYS, KFTG, KPUX, KLNX, KGLD, and KDDC 
(Fig. 1b) every 3 min from t0 − 1 h to t0.  Two types of 
radar observations are assimilated:  Doppler-velocity 
and “no-precipitation” observations (Aksoy et al. 2009).  
The latter are low values of radar reflectivity that indicate 
an absence of precipitation.  Raw radar observations 
were first objectively analyzed at each elevation angle 
(e.g., Dowell and Wicker 2009), from each radar, to 
Cartesian gridpoints that are 6-km apart.  Assimilating 
observations at this coarse resolution keeps the 
computation manageable and is appropriate given the 
relatively coarse horizontal grid resolution of the forecast 
model.  
 
Automated quality-control algorithms were developed for 
processing the objectively-analyzed radar observations.  
Multi-day statistics for radar data at each elevation angle 
from each radar were used to identify locations of likely 
ground clutter, and data at these locations were deleted.  
Two types of ground clutter were flagged:  (1) locally 
high terrain, identified by a high rate of reflectivity-data 
availability, low reflectivity standard deviation, low 
Doppler-velocity standard deviation, and mean Doppler 
velocity near zero and (2) highway traffic, identified by a 
high rate of reflectivity-data availability, low reflectivity 
standard deviation, and high Doppler-velocity standard 
deviation. 
 
A simple but effective method was used to unfold aliased 
Doppler-velocity data.  During the objective analysis, all 



Doppler-velocity observations were forced to be within 
the same Nyquist-velocity bin (Miller et al. 1986).  Then, 
each objectively-analyzed velocity observation was 
“unfolded”, if necessary, right before it was assimilated 
into the storm-scale ensemble.  That is, each velocity 
observation was unfolded into the Nyquist-velocity bin 
that minimized the difference between the observation 
and the prior ensemble-mean estimate of the 
observation. 
 
Standard deviations of observation errors were specified 
as 2.0 m s-1 and 2.0 dBZ for Doppler-velocity and “no-
precipitation” observations, respectively.  Observation 
likelihoods that weren’t within 3 ensemble standard 
deviations of the prior ensemble mean (after unfolding, 
in the case of Doppler velocity) were not assimilated.  
The influence of each radar observation on the model 
state was localized with a half width of 12 km (6 km) in 
horizontal (vertical).  As in the case of the mesoscale 
data assimilation, the 5th order Gaspari and Cohn 
(1999) correlation function was used for localization. 
 
In addition to the spread that came from the mesoscale-
ensemble initial and boundary conditions, localized 
additive noise (Dowell and Wicker 2009) provided 
additional spread to the storm-scale ensembles.  The 
additive noise consisted of local, random perturbations 
to the horizontal wind components, temperature, and 
water vapor.  The perturbations were smoothed so that 
they had length scales of 4 km (2 km) in the horizontal 
(vertical) (Dowell and Wicker 2009). 
 
Since being proposed by Snyder and Zhang (2003), 
EnKF storm-scale radar-data assimilation techniques 
have been studied and refined mostly in simplified 
numerical models (e.g., Dowell et al. 2004; Tong and 
Xue 2005; Dowell and Wicker 2009; Aksoy et al. 2009, 
2010).  Only recently have experiments begun with 
EnKF radar-data assimilation in fully complex mesoscale 
models (e.g., Lei et al. 2009).  Improving storm-scale 
ensemble design in fully complex models will require 
continued experimentation.  Currently, we are 
experimenting with using spatially- and temporally-
varying adaptive inflation to increase spread in the 
storm-scale ensembles.  The 11-12 June case was run 
with DART adaptive inflation turned on, and the 5 June 
case was run with adaptive inflation turned off.  The 
result is different behavior to the ensemble spread in the 
two cases (Fig. 4). 
 
The prior and posterior diagnostic statistics for 
assimilated Doppler-velocity observations that are 
shown in Fig. 4 for the two cases are:  (red) root-mean 
square of innovations (RMSI), where innovation = 
observation − forecast or observation − analysis; (green) 
mean of forecast − observation or analysis − 
observation; and (blue) total spread = square root of the 
summed ensemble variance and observation-error 
variance.  One encouraging result is that the statistics 
become steady from about 20-30 min through the end of 
the data-assimilation window.  Another encouraging 
result is that the mean differences between the model’s 

estimates of the observations and the observations 
themselves (green) are close to zero. 
 
The differences between the prior and posterior spread 
are, on average, greater in the 11-12 June case (blue 
sawtooth pattern in Fig. 4b) than in the 5 June case (Fig. 
4a) since adaptive inflation was turned on in the former 
case but not in the latter.  One characteristic of a well-
designed ensemble is that the “consistency ratio” of total 
spread to RMSI should be roughly 1 (Dowell et al. 2004).  
The consistency ratio in these two cases is typically 
somewhat greater than 1.  For the 5 June case, forecast 
RMSI was often less than the assumed observation error 
(Fig. 4a), meaning that on average, the observations 
were being under fit. 
 

 
(a) 2000 to 2100 UTC 5 June 2009. 
 

 
(b) 2300 UTC 11 June to 0000 UTC 12 June 2009. 
 
Figure 4.  Prior and posterior observation-space 
diagnostic statistics [m s-1; root-mean square of the 
innovations, “total spread” (explained in text), and mean 
of forecast/analysis minus observations shown in red, 
blue, and green, respectively] for Doppler velocity during 
the 1-h assimilation window.  Times (UTC) are indicated 
on the bottom axis. 
 
 
4.  STORM-SCALE ENSEMBLE FORECASTING 
 
For the “radar” ensembles, 6-hour ensemble forecasts 
are produced from t0 to t0 + 6 h following the 1-hour 
radar-data assimilation.  To allow interpretation of the 
“impact” of assimilation of radar observations on forecast 
performance, “control” storm-scale ensemble forecasts 
are made which are the same as “radar”, except radar 
data are not assimilated from t0 − 1 hour to t0. That is, a 
free forecast is made on the nested Front Range domain 



from t0 − 1 h to t0 + 6 h.  Examples of ensemble 
forecasts for the 5 June and 11-12 June cases are 
shown in Figs. 5-8.  One helpful parameter for identifying 
the model equivalent of supercell storms is updraft 
helicity (Kain et al. 2008).  This field represents the 
vertical integral of the product of vertical velocity and the 
vertical component of vorticity from 2-5 km AGL, and 
highlights lower to middle tropospheric cyclonically 
rotating updrafts.  Results of ensemble forecasts are 
conveyed here in terms of probability of updraft helicity 
exceeding 75 m2 s-2 during the 6-h (7-h) “radar” 
(“control”) ensemble forecast. 
 

 
(a) “Control” ensemble forecast from 2000 UTC 5 June 
to 0300 UTC 6 June 2009. 
 

 
(b) “Radar” ensemble forecast from 2100 UTC 5 June to 
0300 UTC 6 June 2009. 
 
Figure 5.  Ensemble probability (%; shading) of updraft 
helicity exceeding 75 m2 s-2 during the forecast period.  
SPC preliminary storm reports (tornadoes in red, hail in 
green, strong winds in blue) are also shown. 
 
 

 
(a) “Control” ensemble forecast. 
 

 
(b) “Radar” ensemble forecast. 
 
Figure 6.  As in Fig. 5, except zoomed in on the 
southeast WY - NE panhandle region. 
 
On a broad scale, “control” and “radar” ensemble 
forecasts for the 5 June case are rather similar (Fig. 5).  
In these experiments, mesoscale data assimilation, not 
storm-scale radar-data assimilation, seems to determine 
mesoscale regions where rotating storms develop in the 
forecast.  Radar-data assimilation changes smaller-scale 
details (Fig. 6). 
 
For the June 5 and June 11-12 “radar” ensemble 
forecasts, there is a good correspondence between 
swaths of predicted high probabilities of rotating updrafts 
and swaths of severe weather reports from observed 
supercells (Figs. 5b, 6b, 7, and 8).  The predicted swaths 
are biased somewhat to the left of the observed severe 
weather, as discussed in the following section.  For the 
June 5 case, a swath of relatively high probability from 
northeast CO into northwest KS (Fig. 5) corresponds to 
an event that didn’t happen.  With only two cases, we 
can’t determine if probabilities are reliable.  However, 
changes resulting from radar-data assimilation do make 
sense.  A comparison of the “control” to the “radar” 
forecast (Fig. 6) indicates that the additional information 
from the radar data has sharpened the probabilistic 
forecast, that is, increased the maximum probability and 
narrowed the swath of high probabilities. 
 



 
Figure 7.  As in Fig. 5, except for the “radar” ensemble 
forecast between 0000 and 0600 UTC 12 June 2009. 
 

 
Figure 8.  As in Fig. 7, except zoomed in on the 
southeast CO - southwest KS region. 
 
Other criteria we are using to evaluate the storm-scale 
forecasts are whether storms evolve smoothly from the 
analysis to the forecast and whether there is a 
correspondence between observed and predicted storm 
locations for individual members.  Updraft locations at 
30-min intervals from the analysis to the 1.5-h forecast 
are shown in Fig. 9 for ensemble member 1 in the June 
11-12 case.  Corresponding observed radar-reflectivity 
images at the same times are shown in Fig. 10.  Early in 
the forecast, the southernmost updraft (“A” in Fig. 9) 
strengthened rapidly and merged with updraft “B”.  The 
net effect was a discrete southeastward storm 
propagation, and inspection of the ensemble forecast 
(Fig. 8) suggests that all members depicted a similar 
evolution.  In agreement with the model forecast, the 
observed southernmost storm “A” did strengthen early in 
the forecast period, as indicated by an increase in 
reflectivity (Figs. 10a and b).  However, unlike in 
ensemble member 1, the southernmost two storms “A” 
and “B” maintained separate identities for at least ~1 h of 
the forecast period shown.  This result could highlight 
resolution limitations of our ensemble.  The 3-km 
horizontal grid spacing could be insufficient to simulate 
interacting storms in such close proximity. 
 

 
Figure 9.  Maximum vertical velocity (m s-1; shading) 
within the grid column during the previous 15 min and 
horizontal winds at 10 m AGL (m s-1; vectors) for 
ensemble member 1 at four different times:  (a) 0000 
UTC (analysis time), (b) 0030 UTC, (c) 0100 UTC, and 
(d) 0130 UTC (1.5 h forecast) 12 June 2009. 
 
 

 
Figure 10.  KPUX radar reflectivity factor (dBZ; shading) 
at 0.5° elevation angle at four times:  0000, 0028, 0101, 
and 0128 UTC 12 June 2010.  Images obtained from 
catalog.eol.ucar.edu/vortex2_2009. 
 
 
5.  DISCUSSION 
 
We are currently producing storm-scale ensemble 
forecasts for more cases during the 4-17 June 2009 
retrospective period.  Initial results for the June 5 and 11 
cases are encouraging in several ways.  Cycling the 
mesoscale ensemble continuously for the two-week 
period appears to be producing adequate initial and 
boundary conditions for storm-scale forecasts, even 
though the mesoscale ensemble is only being provided a 
subset of the observations that operational models such 
as the NAM, GFS, and RUC assimilate.  Another 
encouraging result is that the ensembles produced 
swaths of high forecast probabilities of rotating updrafts 
near the most significant observed supercell storms in 
the two cases.  Radar-data assimilation sharpened the 
probabilistic forecast on 5 June 2009, increasing the 
maximum probability and narrowing the swath of high 
probabilities.  Furthermore, storms in the ensemble 



members evolve rather smoothly from the end of the 
radar-data-assimilation window into the free forecast. 
 
Evidence in initial results suggests that we will have to 
explore ways to introduce more diversity into the storm-
scale ensemble forecasts.  In both cases (Figs. 6 and 8), 
swaths of rotating storms in the ensemble were biased 
to the left of observed swaths of severe weather.  We 
speculate that one factor is the coarse grid spacing, 
which could be insufficient to adequately represent storm 
processes related to observed rightward storm 
propagation.  Supporting this speculation is the inability 
of all ensemble members to maintain two separate 
updrafts in close proximity at the south end of the storm 
line on 12 June 2009 (Figs. 8-10).  Another factor in the 
leftward bias of the predicted storm tracks could be that 
the simulated cold pools are too weak in these cases. 
 
Producing reliable ensemble forecasts on the 
convective-storm scale remains very challenging. 
Nevertheless, results from experiments such as these 
provide helpful guidance in the development of storm-
scale ensemble techniques. 
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