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1.  INTRODUCTION 

  
 During the period 2003-2005 the 
NOAA/Hazardous Weather Testbed Spring Experiments 
(e.g., Kain et al. 2003) tested deterministic convection-
allowing configurations of the Weather Research and 
Forecasting (WRF) model that used the Advanced 
Research WRF (ARW) dynamic core (Skamarock et al. 
2005) in an operational forecasting environment.  
Promising results (e.g., Done et al. 2004; Kain et al. 
2005; Weisman et al. 2008) from these years and a 
desire to quantify forecast uncertainty at convection-
allowing scales motivated the Center for Analysis and 
Prediction of Storms (CAPS) at the University of 
Oklahoma to begin producing Storm Scale Ensemble 
Forecast (SSEF) systems (i.e. convection-allowing 
ensembles) for subsequent Spring Experiments 
beginning in 2007.  During 2007-2008, 10 WRF-ARW 
members composed the SSEF systems (see Kong et al. 
2007, 2008 for model configurations) and in 2009 the 
ensemble size and diversification was increased by 
including eight Nonhydrostatic Mesoscale Model (NMM; 
Janjic 2003) members and two Advanced Regional 
Prediction System (ARPS; Xue et al. 2000) members.   

Given the relatively large size of the 2009 SSEF 
system and considerable computational expense (e.g., 
Xue et al. 2009), the purpose of this study is to examine 
the skill of probabilistic quantitative precipitation 
forecasts (PQPFs) at different spatial scales as a 
function of the ensemble size in the 2009 SSEF system.  
Specifically, we explore whether the gain in PQPF skill 
from each additional ensemble member becomes small, 
approaching a point of ―diminishing returns‖.  Clearly, 
such an analysis is important to consider in designing 
an ensemble system that efficiently utilizes available 
computing resources.   
 
 
2. DATA AND METHODOLOGY 

 
2.1 Ensemble Configuration 

   
 The 2009 SSEF system members used 4-km grid-
spacing, were initialized at 0000 UTC, and integrated 30 
hours over an approximately 3600 x 2700 km domain 
covering most of the contiguous US.  A smaller sub-
domain (~ 2000 x 2200 km; Fig. 1) centered over the 
central US is used in subsequent analyses to avoid 

lateral boundary condition (LBC) effects (e.g., Warner et 
al. 1997) and to concentrate on regions climatologically 
favored for strong, organized springtime convection.  
Results are aggregated over 25 cases between April 27 
and June 5 (Fig. 1).  Ensemble member configurations 
are provided in Table 1 (see also Xue et al. 2009).  
Radial velocity and reflectivity data from WSR-88D 
radars and the surface observations were assimilated 
into initial conditions (ICs) of 17 members using the 
ARPS 3DVAR (Xue et al. 2003; Gao et al. 2004) data 
and cloud analysis (Hu et al. 2006; Xue et al. 2008) 
system.  Analyses (12-km grid-spacing) from the 0000 
UTC operational North American Mesoscale (NAM) 
model (Janjic 2003) were used as the analysis 
background.  Three other members did not assimilate 
radar data so that impacts of the radar data assimilation 
could be isolated (Kain et al. 2010).  However, only the 
17 members assimilating radar data are used herein.  
To account for analysis uncertainty, IC/LBC 
perturbations were derived from evolved (through 3 
hours) bred perturbations of 2100 UTC NCEP 
operational Short-Range Ensemble Forecast (SREF; Du 
et al. 2006) members and added to the ARPS 3DVAR 
analyses.  Corresponding SREF member forecasts 
were used for LBCs.  To account for model physics 

Figure 1 The outer domain (red shading) used 
for the SSEF system ensemble members and the 
inner sub-domain (blue shading) used for the 
analyses conducted in this study.  The dates for the 
25 cases analyzed are listed below the domain.   



uncertainty, different boundary layer, microphysics, 
radiation, and land surface schemes were used (see 
Table 1 for schemes and references).   
 
2.2 Verification methods 
 

 NCEP’s stage IV (Baldwin and Mitchell 1997) 
multi-sensor rainfall estimates are used to verify rainfall 
forecasts.  The 4-km stage IV grids are remapped to the 
model grid using a neighbor-budget interpolation (e.g., 
Accadia et al. 2003) that conserves the total volume of 
liquid over the domain.  Statistical significance is 
determined using Hamill’s (1999) resampling 
methodology.   

 PQPFs for 6-h accumulated rainfall computed 
using 1 to 17 ensemble members for different spatial 
scales are examined.  PQPFs are computed by finding 
the location of the verification thresholds within the 
distribution of ensemble member forecasts (e.g., Hamill 
and Colucci 1997, 1998).  This method for computing 
probabilities is preferred because it results in a 
continuous range of probabilities rather than a set of 
discrete values that are obtained by simply tallying the 
fraction of members that forecast an ―event‖.  Different 
spatial scales are examined by averaging grid-points 
within circular regions with radii varying between 2-km  
(the raw model grid) and 200-km, similar to the 
―upscaling‖ methodology described by Ebert (2009).  
For the raw model grids, the 0.10-, 0.25-, and 0.50-in 

Figure 2 (a) Stage IV precipitation estimates interpolated to the raw model grid for the 6-hr period ending 
0000 UTC 16 May 2009 with the black contours marking the 0.75-in rainfall threshold; and (b) corresponding 
SSEF system 24-hr forecast probabilities of 6-hr rainfall greater than 0.75-in (shaded) with areas of stage IV 
rainfall greater than 0.75-in hatched. (c) - (d), (e) - (f), (g) - (h), and (i) – (j), same as (a) – (b), except stage IV 
estimates and the forecasts used to generate probabilities are smoothed over grid-points within radii of 10-, 60-, 
100-, and 200-km, respectively, of each grid-point. (k) The quantiles for a range of rainfall thresholds in the 
unsmoothed stage IV rainfall distribution are marked (e.g., p = 0.980 for 0.50-in.), and each line shows how the 
values corresponding to each of these quantiles changes for grids smoothed over radii from 10- to 200-km.   



rainfall thresholds are verified.  For the ―upscaled‖ 
model grids, verification thresholds corresponding to the 
0.10-, 0.25-, and 0.50-in. quantiles in the non-upscaled 
stage IV rainfall distribution (aggregated over all cases 
and grid-points) are used to allow equitable comparison 
among the different spatial scales.  In other words, 
exceedance forecasts of constant rainfall quantiles, 
rather than amounts, are evaluated (e.g., Jenkner et al. 
2008).  For example, in the distribution of stage IV 
rainfall estimates on the non-upscaled grid for all of the 
6-hr accumulation periods considered in this study, the 
verification threshold 0.50-in represents the p=0.98 
quantile of the distribution.  So, for comparison to one of 
the upscaled grids, the value corresponding to the 
p=0.98 quantile of the upscaled grid is used.  Figure 2k 
illustrates how using constant quantiles changes the 
verification thresholds with increasingly smoothed 
rainfall fields, and Figures 2a-j show how varying 
degrees of smoothing affect the appearance of the 
forecast probabilities and observed precipitation fields.   
 PQPFs are evaluated using the area under the 
relative operating characteristic curve (ROC area; 
Mason 1982).  The ROC area measures ability to 

distinguish between events and non-events and is 
closely related to the economic value of a forecast 
system (e.g., Mylne 1999; Richardson 2001).  The ROC 
area is calculated by computing the area under a curve 
constructed by plotting the probability of detection 
(POD) against the probability of false detection (POFD) 
for specified ranges of PQPFs.  The area under the 
curve is computed using the trapezoidal method  
(Wandishin et al. 2001).  The ranges of PQPFs used for 
ROC curves in this study are P < 0.05, 0.05 ≤ P < 0.15, 
0.15 ≤ P < 0.25 … 0.85 ≤ P < 0.95, and P ≥ 0.95.  The 
range of ROC area is 0 to 1, with 1 a perfect forecast 
and areas greater than 0.5 having positive skill.  A ROC 
area of 0.7 is generally considered the lower limit of a 
useful forecast (Buizza et al. 1999).   
 To study the effect of increasing n on PQPF skill, 
ROC areas were computed for 100 unique combinations 
of randomly selected ensemble members for n = 2, 3, … 
15.  For n = 1, 16 and 17, ROC areas were computed 
for all possible combinations of members because the 
number of unique member combinations for these n is 
smaller than 100.   
 

Figure 3 ROC areas with increasing ensemble size at different spatial scales for 6-hr accumulated 
precipitation at the 0.10-in rainfall threshold for forecast hours (a) 6, (b) 12, (c) 18, (d) 24, and (e) 30.  (f) – (j), 
and (k) – (o) same as (a) – (e), except for the 0.25- and 0.50-in rainfall thresholds, respectively.  The range of 
values encompassed by each color corresponds to the range of ROC areas for each ensemble size within the 
“whiskers” of a standard box-plot (i.e., the most extreme values within 1.5 times the inter-quartile range).  The 
dark shaded areas denote ensemble sizes for which the ROC areas are significantly less (α = 0.05) than that of 
the full 17 member ensemble.  The legend in panel (a) shows the spatial scales that correspond to each color of 
shading. 



3. RESULTS 

  
 Figure 3 illustrates how the ROC areas change 
with increasing n.  Not surprisingly, for each rainfall 

threshold and spatial scale examined, the ROC areas 
generally increase with increasing n, but with lesser 
gains as n approaches the size of the full ensemble.  To 
objectively define a ―point of diminishing returns‖, 
significance tests were performed comparing ROC 
areas for each n to that of the full 17 member ensemble.  
For each n, the combination of members with the 
median ROC area was used in the significance test 
(dark shading in Fig. 3 distinguishes significance).  
Clearly, for all three rainfall thresholds (or quantiles) 
examined, more members are required to reach 
statistically indistinguishable ROC areas relative to the 
full ensemble as forecast lead time increases and 
spatial scale decreases.  For example, at every spatial 
scale for the 0.25-in threshold at forecast hour 6 (Fig. 

3f), only three members are needed to obtain ROC 
areas that are not significantly different than those of the 
full ensemble.  However, by forecast hour 30 at the 
smallest spatial scale, nine members are needed to 
obtain ROC areas not significantly different than those 
of the full ensemble, and fewer members are needed 
with increasing spatial scale (Fig. 3j).   
 These results can be viewed as reflecting the gain 
in PQPF skill as the forecast probability distribution 
function (PDF) of future atmosphere states is better 
sampled by larger n.  Because more members are 
required to effectively sample a wider forecast PDF, the 
n at which skill begins to flatten increases with a wider 
PDF.  These apparent changes in the point of 
diminishing returns are consistent with two aspects of 
our analysis associated with a widening forecast PDF: 
1) increasing forecast lead time (because 
model/analysis errors grow) and 2) decreasing spatial 
scale [because errors grow faster at smaller scales 

Figure 4 Rank histograms from the SSEF system for 6-hr accumulated precipitation ending at forecast hours 
6-30.  (b) Average mean-square-error (MSE) of ensemble mean 6-hr precipitation (blue), and corresponding 
ensemble variance (green) from the SSEF system at forecast hours 6-30.  (c) Idealized, normally distributed 
forecast probability distribution functions (PDFs) with μ = 10-mm and σ = 1.87-mm [green; corresponding to the 
variance at forecast hour 6 in (b)] and σ = 3.0-mm [blue; corresponding to the MSE of the ensemble mean at 
forecast hour 6 in (b)].  The black vertical line marks the 12.7-mm (0.5-in) rainfall threshold.  (d) Average error in 
forecast probabilities for rainfall greater than 12.7-mm derived from randomly sampling the PDFs in (c) using an 
increasing number of samples.   



(e.g., Lorenz 1969)].  Alternatively, the results could be 
viewed as reflecting the typical number of members 
required to adequately encompass the observed 
precipitation – as lead time increases and scale 
decreases, the resulting error growth means that 
individual ensemble member solutions become less 
likely to verify.  Therefore, more members are needed to 
―capture‖ the observations.  These results are consistent 
with Richardson (2001) who found that for lower 
predictability more members were required to reach 
maximum possible skill (i.e., skill obtained using ∞ 
members), and Du et al. (1997) who also found that the 
majority of PQPF skill could be obtained with ~ 10 
members.   
 
4. DISCUSSION 

 
 Although Figure 3 appears to identify the point of 
―diminishing returns‖ for n, additional considerations 

should be accounted for in future convection-allowing 
ensemble design.  First, for cases with lower than 
average predictability, larger n is required to effectively 
sample the forecast PDF.   Second, the rainfall 
forecasts are under-dispersive (i.e., observations often 
fall outside the range of ensemble member solutions) 
which is implied by the U-shape in rank-histograms 
(e.g., Hamill 2001) at each forecast hour (Fig. 4a), as 
well as a statistical consistency analysis showing that 
the ensemble variance is less than the mean-square-
error (MSE) of the ensemble mean (Fig. 4b).  The 
under-dispersion means that the forecast PDF is too 
narrow and a reliable ensemble (i.e., no under-
dispersion) would require more members to effectively 
sample the forecast PDF.  The under-dispersion, which 
is most pronounced at early forecast lead times (~ 6 to 
18-hrs), is likely related to under-sampling of model 
errors and inadequate IC/LBC perturbation methods.  
For example, the IC/LBC perturbations are extracted 
from relatively coarse (30- to 45-km Δx) SREF members 
and do not account for smaller scale errors that would 
be present on the 4-km grids (Nutter et al. 2004).  At the 
early forecast lead times when error growth is 
dominated by these smaller scales, the SREF 
perturbations may not be able to generate enough 
spread to accurately depict forecast uncertainty.   

To illustrate the impact that under-dispersion has 
on the apparent n required to effectively sample a PDF 
in an idealized framework, two normally distributed 
PDFs with an arbitrarily chosen mean (μ = 10-mm) are 
shown (Fig. 4c).  The forecast PDF with standard 
deviation, σ = 1.87-mm (green), corresponds to the 
average ensemble variance at forecast hour 6, while the 
forecast PDF with σ = 3.0-mm (blue) corresponds to the 
average MSE of the ensemble mean at forecast hour 6 
(shown in Fig. 4b).  Each of these PDFs is randomly 
sampled using n from 2 to 100.  For each n, 1000 sets 

of synthetic ―members‖ are drawn and probabilities for 
rainfall greater than 12.7-mm (marked by vertical line in 
Fig. 4c) are computed for each set using the same 
method to compute PQPFs described in Section 2b.  
Then, using the actual probabilities from the PDFs, the 
average probability error (i.e., sampling error) for each n 

is computed (Fig. 4d).  In this idealized case, if the 
tolerable error is considered ≤ 0.05 (marked by 
horizontal line in Fig. 4d), then the errors associated 
with probabilities derived from the PDF with σ = 1.87-
mm would on average fall below the tolerable error 
using a minimum of 20 members.  However, if the 
ensemble was reliable (i.e., σ = MSE = 3.0-mm), about 
60 members would be required to fall below the 
tolerable error.   

Third, the change in ROC area as a function of n 
does not necessarily reflect the change in potential 
value (e.g., Richardson 2000) to the user.  For example, 
Richardson (2001) illustrated that for rare events, users 
with low cost-lost ratios (e.g., Murphy 1977) would 
benefit significantly in terms of potential value by 
increasing n from 50 to 100, despite little change in skill 
measured by Brier Skill Score (Wilks 1995).   

Not to be overlooked are the actual values of the 
2009 SSEF system ROC areas (Fig. 3).  For the full 
ensemble, ROC areas range between 0.88 and 0.95 out 
to forecast hour 30 for even the finest spatial scales. 
These values are quite skillful, especially considering 
the relatively low predictability typically associated with 
May-June (Fritsch and Carbone 2004) and the relatively 
short accumulation periods.     

In summary, results of this study are encouraging 
because PQPFs derived from the 2009 SSEF system 
were found, on average, to be quite skillful.  Additionally, 
relatively small n (~ 3 to 9 members) was found, on 
average, to have statistically indistinguishable ROC 
areas relative to the full 17 member ensemble, and the 
n at which skill began to level off increased (decreased) 
with increasing forecast lead time (spatial scale).  
However, if the SSEF system had larger spread that 
better matched the MSE, more members would be 
required to reach the point of ―diminishing returns‖.  In 
addition, relatively low predictability regimes and/or rare 
events would require more members to reach a point of 
―diminishing returns‖.  Nevertheless, clearly the spatial 
scale and forecast lead time needed for end-users 
should be carefully considered in future convection-
allowing ensemble designs.  Future work is needed to 
improve reliability of convection-allowing ensembles, 
and further evaluations are needed for weather regimes 
with varying degrees of predictability and/or rare events.      
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