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1. INTRODUCTION

We propose to develop a climatology of mesoscale 
convective systems (MCSs), with an emphasis on MCS 
morphology  and  its  relationships  with  the  storm 
environment  and  the  production  of  heavy  rainfall.  Our 
goal is to evaluate the environmental conditions that are 
associated  with  MCS development  and  dissipation,  as 
well  as  the  transition  from  one  MCS  configuration  to 
another, and how these relate to heavy rainfall. Because 
of the spatial scale of an MCS, it is likely to be sampled 
by many rain gages. However, it is much less certain that 
the heaviest rainfall will be well-resolved by typical rain 
gage networks. To better assess heavy rainfall produced 
by MCSs, we are developing an algorithm to  estimate 
rainfall  using radar reflectivity and model analysis. This 
algorithm allows  the  use  of  multiple  Z-R  relationships 
within  a  single  domain,  determined  based  on  the 
structure  of  the  precipitation  system  and  the  storm 
environment. The algorithm will also attempt to correct for 
some radar errors, such as bright banding.

In  addition  to  the  problem  of  the  limited  spatial 
resolution  of  typical  rain  gage  networks,  the  de  facto 
standard instrumentation of tipping bucket gages is prone 
to underestimating heavy rainfall. While there are many 
potential errors that can contaminate radar-based rainfall 
estimates,  they  are  not  prone  to  this  underestimation 
bias. Although the algorithm is still  under development, 
the techniques will be described in this paper, along with 
a brief discussion of the overall goals of the project.

2. OPERATIONAL RAINFALL ESTIMATION

Rainfall estimation is accomplished by estimating the 
amount of liquid water in a volume scanned by radar. The 
relationship between radar reflectivity and the volume of 
liquid  water  depends  primarily  on  three  hydrometeor 
characteristics:  size,  number,  and  refractive  index. 
Because  there  are  three  variables  and  one  observed 
parameter,  two  additional  assumptions  are  necessary. 
The refractive index is assumed to be that of liquid water, 
regardless of the actual composition of the hydrometeors. 
Additionally,  the  distribution  of  raindrop  size  is 
parameterized, using a power-law equation known as a 
Z-R relationship.

Z=aRb (1)

Many  such  relationships  exist,  of  the  form  of  (1), 
depending  on  pseudo-constants  a and  b,  which  are 
modified to allow for various distributions of drop size. 
Indeed,  a  plethora  of  Z-R  relationships  have  been 
empirically derived (Battan 1973). 
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The current WSR-88D rainfall algorithm (Fulton et al. 
1998)  applies  a  single  forecaster-selected  Z-R 
relationship after correcting for a few radar errors such as 
anomalous  propagation,  ground  clutter,  and  beam 
blockage.  There  are  five  Z-R  relationships  used 
operationally (Nelson et al. 2010): the Marshall-Palmer Z-
R relationship (Marshall and Palmer 1948), the WSR-88D 
convective Z-R relationship, the Rosenfeld tropical  Z-R 
relationship  (Rosenfeld  et  al.  1993),  and  two  Z-R 
relationships for cool season stratiform rain.

Other rainfall products postprocess output from the 
WSR-88D  rainfall  algorithm,  usually  creating  mosaics 
using data from multiple radars and incorporating other 
observations,  including  calibration  of  radar-based 
estimates using rain gage totals (Lin and Mitchell 2006; 
Nelson et al. 2010). One such product, the Multisensor 
Precipitation Estimator  (MPE),  incorporates radar  data, 
gage  data,  satellite  data,  and  climatological  inputs  to 
produce a mosaic. The first step in the MPE is to mosaic 
precipitation estimates from individual radars, which are 
computed using the WSR-88D rainfall algorithm. Manual 
adjustments  are  applied,  based  on  rain  gage 
observations, to account for local variations in rainfall rate 
not otherwise represented in the analysis.

Klazura  et  al.  (1999)  noted  that,  when  using  the 
WSR-88D  rainfall  algorithm,  convective  rain  was 
underestimated at  distant  ranges and overestimated at 
mid-ranges,  whereas  stratiform  rain  was  consistently 
underestimated.  Additionally,  Rosenfeld  et  al.  (1992) 
found that partial beam filling led to underestimation of 
rainfall  at  distant  ranges.  Bright  banding  (Austin  and 
Bemis 1950), caused by melting hydrometeors, also can 
cause substantial  overestimation of  rainfall  (Fabry  and 
Zawadzki 1995; Smith 1986). Also, drop size distribution 
is highly variable, even within a single storm (Uijlenhoet 
et  al.  2003),  suggesting that  multiple Z-R relationships 
may provide the best rainfall estimation, even from one 
region to another within a storm. Although the MPE does 
correct  for  some  of  these  issues,  heavy  rainfall  is 
frequently underestimated, likely due to the climatological 
inputs and the rarity of such events. Additionally, areas 
that are covered sparsely by rain gages receive poorer 
calibrations,  and  therefore  are  subject  to  greater  error 
(Limpert 2008).

3. PROPOSED ALGORITHM

There  are  many  sources  of  error  in  radar 
observations that can adversely affect rainfall estimates. 
For this algorithm, we have chosen to address the issues 
of refractive index, including bright banding, errors due to 
an incorrect Z-R relationship, beam blockage, and partial 
beam  filling.  Each  of  the  potential  errors,  and  the 
methods  for  correcting  them will  be  discussed  in  this 
section. Fig 2. shows the flow of data and the processing 
within the proposed rainfall algorithm.
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3.1. Beam Blockage and Beam Filling

Beam filling  is  an  issue  at  distant  ranges  from a 
radar, in which the radar beam, even at its lowest tilt, may 
be partially or entirely above any hydrometeors that are 
present. As a result, the measured reflectivity is weaker 
than what would be sampled at lower altitudes, resulting 
in underestimation of rainfall. In the proposed algorithm, 
this is accounted for by incorporating data from multiple 
radars  to  generate  mosaics.  Algorithms  within  the 
Warning  Decision  Support  System  –  Integrated 
Information  (WDSS-II)  (Lakshmanan  et  al.  2007)  are 
used to  manipulate  the radar  data.  Level  II  WSR-88D 
data  are  ingested  and  the  w2merger  algorithm 
(Lakshmanan et at. 2006) is used to mosaic data from 
multiple radars, transforming the data from a polar grid to 
a lat-lon-height grid. To the extent that there is a nearer 
radar,  providing  coverage  at  a  lower  altitude,  beam 
blockage  and  beam  filling  can  be  corrected  by 
incorporating multiple radars.

3.2. Bright Banding

This  correction,  while  largely  intended  to  address 
bright  banding,  accounts  for  variability  in  hydrometeor 
refractive index, both in the melting layer and above it, in 
which  the  hydrometeors  will  be  predominantly  ice 
crystals.  Bright  banding  occurs  as  a  result  of  melting 
hydrometeors,  in  which  the  scattering  cross section is 
wider than a more spherical  raindrop,  but  still  has the 
refractive  index  of  liquid  water,  thus  resulting  in 
anomalously strong reflectivity.

Melting layer height is determined using temperature 
profiles  from RUC model  output.  At  each  lat-lon  point 
within the domain, the lowest altitude is chosen that is at 
least 1 km above the surface and is not within the melting 
layer. If the selected altitude is above the freezing level, 
hydrometeors are likely to be mostly ice crystals, and a 
correction of 7 dBZ will be added to account for the much 
lower refractive index of ice compared with liquid water 
(Rinehart  2004).  The  output  of  this  step  is  a  lat-lon 
reflectivity grid.

3.3. Z-R Relationship Variability

The five Z-R relationships that are used operationally 
in  the  WSR-88D rainfall  algorithm are  points  along  a 
continuum of possible Z-R relationships. While it certainly 
is  possible  to  improve upon the operational  WSR-88D 
rainfall algorithm by selecting between, say, the Marshall-
Palmer Z-R relationship and the WSR-88D convective Z-
R relationship, it does not fully represent the spectrum of 
drop size distributions. Rather, the goal is to compute a 
reasonable  Z-R  relationship  from  the  available  data, 
including  radar-measured  parameters  and  objective 
analysis  of  the  atmospheric  conditions.  This  can  be 
achieved through multiple regression, in which the output 
is  two  parameters,  a and  b,  that  are used in  the Z-R 
relationship.

The first consideration is representing the structure 
of the storms. Klazura et al. (1999) associated convection 
with strong horizontal reflectivity gradients and stratiform 

precipitation  with  weak  gradients.  Similar  techniques, 
such as the Fourier transform and the wavelet transform 
can  be  used  in  an  automated  routine  to  distinguish 
between convective and stratiform precipitation (Limpert 
et al. 2008). We propose to use the wavelet transform to 
identify  storms  within  radar  imagery.  By  scaling  the 
wavelet  function,  it  is  possible  to  identify  storms  at 
multiple scales. Small wavelengths with strong reflectivity 
peaks can be associated with convection whereas larger 
wavelengths  and  weaker  reflectivity  maxima  can  be 
associated  with  stratiform  precipitation.  Updrafts  in 
convection  are  much  stronger  than  in  stratiform 
precipitation  systems,  which  results  in  a  significantly 
different drop size distribution, and therefore a different Z-
R relationship is needed.

Hail,  which  is  rarely  associated  with  tropical 
convection,  produces anomalously strong reflectivity.  In 
the  central  United  States,  reflectivity  input  to  Z-R 
relationships is generally capped at  53 dBZ to prevent 
contamination of rainfall estimates with hail. The hail cap 
varies seasonally and geographically. While a hail cap is 
necessary, the presence of particularly strong reflectivity 
also  provides  information  as  to  the  characteristics  of 
storms.  The presence of  hail  suggests  that  the  storm 
environment  is  unlikely  to  be  similar  to  tropical 
environments. A hail detection algorithm will be used to 
provide information on the presence of hail and the size 
of any hail that is present.

Additionally,  atmospheric  conditions  will  be  used 
from  an  objective  analysis  to  provide  additional 
meteorological data that may be useful in identifying an 
appropriate  Z-R  relationship.  We  expect  these 
parameters will  influence the drop size distribution and 
may be significant enough to include. The parameters are 
as follows:

• Mid-level  thickness,  to  account  for  warm 
temperatures aloft, affecting the processes by which 
raindrops grow in size

• Low-  and  mid-level  moisture,  expecting  that 
abundant  moisture  will  reduce  evaporation  of 
smaller  drops  as  well  as  providing  abundant 
moisture for drop growth

• Deep layer bulk shear and upper level storm relative 
winds,  because  strong  winds  aloft  can  advect 
hydrometeors  away from the  storm,  affecting  the 
drop size distribution

Using the available inputs, a Z-R relationship will be 
selected at each point in the domain where reflectivity is 
strong enough to suggest that precipitation is cocurring. 
The output of this step of the algorithm is a lat-lon grid 
containing  estimated  rainfall  rates.

Dual-polarization  radar  data  will  be  obtained  for 
selected cases, which can be used to compute the drop 
size  distribution  and  identify  the  type  of  hydrometeors 
within a storm. Given this information, it will be possible 
to compute a “truth”  a and  b in a Z-R relationship. The 
hydrometeor identification from the dual-polarization data 
will  be used in place of the hail detection algorithm for 
these  cases.  Scale  inputs,  hail  detection,  and  storm 
environment parameters will be recorded for the cases, 
and a multiple regression will be performed to determine 



weights for each of the parameters. The equations that 
are computed will be used to calculate an appropriate Z-
R relationship, given the parameters, but without knowing 
a and b a priori.

4. VERIFICATION

Most operationally deployed rain gages are tipping 
bucket  gages,  and  therefore  are  prone  to 
underestimating heavy rainfall events, which are the most 
interesting for the MCS study. Verification of the algorithm 
will be conducted by comparing rainfall estimates against 
rain  gages  in  the  United  States  Climate  Reference 
Network (US-CRN). CRN gages are weighing-type rain 
gages, which are less prone to some of the errors that 
can reduce the quality of observations taken using tipping 
bucket gages. It is also possible to test the algorithm by 
considering another set of events observed using dual-
polarization  radar,  and  using  the  “truth”  drop  size 
distribution to calculate an a and b that can be compared 
against the algorithm a and b.

5. MCS TRACKING

MCSs will be tracked using radar imagery and will be 
classified  based  on  the  structure  of  the  thunderstorm 
complex  and  whether  the  MCS  is  intensifying, 
maintaining  its  strength,  or  diminishing.  MCS 
configuration, examples of which are shown in Fig. 1, will 
be determined by examining the radar imagery. Infrared 
satellite imagery will be used to identify trends in MCS 
intensity.  The  MCS  tracks  will  be  combined  with  the 
rainfall  data and  atmospheric  parameters  derived  from 
objective analysis. Rainfall estimates from the algorithm 
described  in  this  paper  will  be  used  in  this  study. 
Multivariate  analysis of  variance and other  multivariate 
statistical methods will  be used to identify relationships 
between the data. Our goal is an understanding of the 
atmospheric conditions that govern the MCS lifecycle and 
the transition from one configuration to another, such as 
an MCS with parallel stratiform precipitation transitioning 
to  an  MCS  with  trailing  stratiform  precipitation.  An 
additional  goal  is  to  understand  the  factors,  including 
MCS  type  and  environmental  conditions,  that  are 
favorable for heavy rainfall.

6. CONCLUSION

Our  goal  is  to  understand  how  atmospheric 
conditions affect MCS morphology, and how these relate 
to heavy rainfall events. We plan to accomplish this by 
tracking  MCSs,  classifying  the  MCSs  periodically,  and 
recording various atmospheric parameters and measures 
of rainfall  produced. Multivariate statistical  methods will 
be used to relate these together, with an emphasis on 
understanding  MCS  lifecycles  and  heavy  rainfall 
production. Rain gage networks are likely insufficient to 
accomplish  these  goals,  so  we  are  developing  the 
algorithm  presented  in  this  paper  to  provide  a  high 
resolution rainfall data set comparable to the other data 
that will be used in this study. Many radar-based products 
only  employ  a  single  Z-R  relationship  within  a  given 

radius of a radar site. A large portion of the MCSs that will 
be tracked are likely to have regions of convection and 
stratiform rain in close proximity, making such a scheme 
unsuitable.  We  believe  that  this  algorithm will  provide 
more suitable estimates of rainfall for our purposes, and 
quite possibly for many other uses.
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Fig. 1. From Gallus et al. (2008), showing nine different classifications for storms. These include isolated cells, clustered 
cells, broken lines, lines with no stratiform precipitation, lines with trailing statiform, lines with parallel stratiform, lines 
with leading stratiform, bow echoes, and non-linear MCSs.



Fig. 2. This shows the flow of data and processing within the proposed rainfall algorithm.


