
RADAR ECHO CLASSIFIER ALGORITHM DEVELOPMENT USING PYTHON

Joseph VanAndel*
National Center for Atmospheric Research 1

Boulder, Colorado

1 INTRODUCTION
We have developed a Radar Echo Classifier

(REC) algorithm to identify various radar echoes such
as precipitation, clear air, and in particular
anomalously propagated (AP) ground clutter in
NEXRAD radar data. The REC uses fuzzy logic to
identify these various echo types. We implemented
the REC using the Python language along with C++
extensions. This implementation replaces and
extends the functionality of an earlier program, the AP
Clutter Analysis Tool (APCAT) (VanAndel, et al.,
1999). Our new implementation provides a more
productive environment to quickly evaluate and test
new algorithms and a very efficient system to process
large amounts of data.

2 OVERVIEW OF RADAR ECHO CLASSIFIER
2.1 Anomalous Propagation

Anomalous Propagation (AP) is caused by
variations in temperature and moisture in the
atmosphere that change the index of refraction.
These gradients in the index of refraction can cause
the transmitted microwaves from weather radars to
“bend”, striking the ground, rather than penetrating
the atmosphere. This results in radar echoes from
the ground being erroneously interpreted as weather
by automatic hydrology programs, causing
overestimates of precipitation. Since weather radars
are also used to vector aircraft traffic around severe
weather, AP clutter can cause unnecessary delays
because air traffic controllers may route aircraft
around non-existent storms. We are optimizing
automatic algorithms to detect AP clutter using “fuzzy
logic” (Kosko, 1992, Kessinger, et al, 1999).
2.2 Fuzzy Logic

We use a fuzzy logic algorithm to identify AP
clutter in radar data. The first step is to calculate
“feature fields” from the reflectivity, velocity, and
spectrum width fields of the radar data. Each
“feature” is a statistic computed for a given spatial
region. Computed statistics include mean, median,
standard deviation, and “texture” (mean squared
differences over a region).

For each “gate” (spatial location), each feature
field is looked up in its “membership function”. The
membership function is a mapping from input values
to probability. For example, the membership function
for mean velocity of AP has a value of 1 for the
velocity value of 0, since AP clutter tends to have 0
m/s velocity. The weighted outputs of the
membership functions are summed to yield a

combined probability output (see Figure 1).
(Kessinger, et al., 1999) provides a detailed
description of the algorithm.

Figure 1 - Fuzzy Logic Computation
2.3 Scoring and Statistics

After computing the Radar Echo Classifier
output, the output is scored to evaluate the recognizer
performance. The algorithm’s performance is
compared to either a scientist’s manual truthing or an
objective truth obtained from dual polarization radar
data (Kessinger 2001). Statistics are computed and
then plotted as shown in Figure 2. Based on these
statistics, the membership functions, weights, and
thresholds are adjusted to optimize the Radar Echo
Classifier.

Figure 2 - Performance Statistics

3 WHY DID WE REPLACE OUR EXISTING
IMPLEMENTATION?
Previously, we implemented a fuzzy logic

recognition algorithm in APCAT (VanAndel 1999).
We found several deficiencies with this program that
convinced us to write a new program to provide this
functionality. First, because of byte-order and
alignment issues with our radar data files, we could
not easily port APCAT from Solaris to Linux.

*Corresponding author address: Joseph VanAndel, NCAR,
P.O. Box 3000, Boulder, CO 80307-3000; email
vanandel@ucar.edu
1 NCAR is sponsored by the National Science Foundation.

12B.7

MEAN
VELOCITY

TEXTURE
REFELECT.

WEIGHTED
SUM
of

INTEREST
FIELDS

Weight

APPLY
THRESHOLD

FINAL
DETECTION
PRODUCT

MEAN
WIDTH

Weight

Weight

mailto:vanandel@ucar.edu

Inexpensive Linux workstations are now providing
better price-performance than Sun workstations, so
we were motivated to build a more portable program.
Second, APCAT was slow in processing data
because it frequently wrote data files to disk for
intermediate storage. Since modern workstations
have far more memory than was previously available,
the new program could keep entire “sweeps” (360
degrees of radar data) in memory, rather than writing
out all the intermediate data to disk. Third, APCAT’s
user interface and program logic were written in Tool
Command Language (Tcl) (Ousterhout, 1994). It
became clear that Tcl did not scale well to larger
applications because of its lack of object orientation
and higher-level data types. Python was a natural
choice because it was object-oriented and had
superior data types. Finally, APCAT was a single
monolithic program that could not easily be attached
to other radar processing algorithms. Using Numeric
Python (section 4) to implement the REC made it
much easier to add new routines. By simply defining
new routines that read Numeric Python arrays, it was
quite simple to add new algorithms that interface with
our existing programs. As a result, we decided to
implement our fuzzy logic recognition algorithm using
Python.

4 WHAT IS PYTHON?
Python is a very high level interpreted object

oriented programming language (van Rossum and
Drake 2000) with a rich set of data types. Although
Python is easy to learn, it is a very powerful language.
Python is freely available, widely used, and well
supported on a variety of computers and operating
systems. Because Python is interpreted, it is not
suitable (by itself) for computationally intensive tasks.
However, Python is designed to allow extensions that
can perform specialized and computationally intensive
tasks. The Numeric Python extension (Ascher 2001)
was developed to efficiently perform calculations on
large arrays of numbers. Many other extensions are
available, such as database interfaces, graphic user
interfaces (GUI), web programming, and distributed
programming.

5 SOFTWARE ARCHITECTURE
We built the Radar Echo Classifier (REC)

software as a set of C++ extensions for Python and a
collection of Python scripts. First, we built a set of
Python extensions to read NCAR’s DORADE format
radar files into Numeric Python arrays. Once the
radar data was represented as Numeric Python
arrays, we could use the standard Numeric Python
operators (such as add, subtract, multiply, FFT). We
wrote our own Numeric Python extensions to
efficiently calculate the “feature fields”(section 2.2).
The membership function lookup routine was written
in Python using an interpolation routine provided by
Numeric Python. Also, we developed scoring and
statistics routines that analyzed the performance of
the REC. The software architecture is shown in figure
3.

Figure 3 – Software Architecture
Because Python is interpreted, it was simple to

define our fuzzy logic calculation parameters in a
“preference” file that is read when the Radar Echo
Classifier starts running. The preference file defines
the membership function for each “feature field” along
with the weights used to calculate the final result.
This implementation makes it very simple for
scientists to experiment with new membership
functions or weights, without requiring any changes to
the Radar Echo Classifier application code.

6 BENEFITS OF USING PYTHON
We found that implementing the Radar Echo

Classifier in Python had several benefits. First of all,
since Python is interpreted, it was much faster to
develop and test new algorithms, compared to the
edit, compile, debug cycle of compiled languages. We
could easily build small test cases to verify our
algorithms. It was much easier to add new features
than if we only used a compiled language. Since the
computationally intensive algorithms were written as
C++ extensions, our classifier could quickly process
large amounts of data, even though large portions of
our application were written in an interpreted
language. We’ve found that Python is very stable and
remarkably bug free, partly because the source is
available to everyone, and many other programmers
are using it (and contributing their bug fixes.) Since
the source is freely available, we’ve been able to add
features to the Numeric Python package itself. Also,
since Python is freely available, we can share our
work with other researchers, without requiring them to
purchase software licenses, as would be required with
a commercial software package. When we have
needed assistance with Python, we’ve found the
Python development community has quickly
responded to our questions.

7 CONCLUSIONS
Numeric Python provided an excellent

framework for radar computations. We have been
able to take advantage of a large set of existing array
manipulation software and have been able to easily
implement our own routines within the Numeric
Python framework. We would strongly recommend

RADAR ECHO CLASSIFIER (REC)
SCRIPTS

EXTENSION
WRAPPERS

RADAR ECHO
CLASSIFIER

C++ EXTENSIONS

NUMERIC
PYTHON

EXTENSIONS

GRAPHICAL
USER

INTERFACE
EXTENSIONS

(GTK)

PYTHON CORE

C RUNTIME LIBRARY

this approach to anyone processing large quantities of
numeric data.

8 FUTURE DIRECTIONS
We plan to expand the Radar Echo Classifier by

adding a “Confidence Algorithm” based on history, the
state of the clutter bypass map, climatology, and
terrain data. We intend to add histograms and scatter
diagrams to help analyze the statistics of our data.
We plan to implement “multi-variable” fuzzy logic,
where the membership function used for a particular
variable depends on the value of a second variable.

9 ACKNOWLEDGEMENTS
The National Weather Service Radar Operations

Center (ROC) in Norman, OK, sponsors this research.
We are grateful to the developers of Python and
particularly the developers of the Numeric extensions.

10 REFERENCES
Ascher, D., P.F. Dubois, K. Hinsen, J. Hugunin, and

T. Oliphant, 2001:Numerical Python, Lawrence
Livermore National Laboratory. See
http://sourceforge.net/projects/numpy

Kessinger, C., S. Ellis, and J. VanAndel, 1999: A
Fuzzy Logic Radar Echo Classification Scheme
for the WSR-88D, Preprints, 29th International
Conference on Radar Meteorology, AMS,
Montreal, 12- 16 July 1999, 576-579

Kessinger, C., S. Ellis, and J. VanAndel, 2001:
NEXRAD Data Quality: The AP Clutter
Mitigation Scheme, Preprints, 30th International
Conference on Radar Meteorology, AMS,
Munich, 19-24 July 2001

Kosko, B., 1992: Neural Networks and Fuzzy
Systems: A Dynamical Systems Approach to
Machine Intelligence. Prentice–Hall, N.J.

Ousterhout, J.K., 1994, Tcl and the Tk Toolkit,
Addison Wesley

VanAndel, J., C. Kessinger, and D. Ecoff, 1999:
APCAT: An AP Clutter Analysis Tool, Preprints,
29th Radar Meteor. Conf., AMS, Montreal, 12-16
July 1999, 267-269

van Rossum, G., F.L. Drake, Python Tutorial,
October 16, 2000
http://www.python.org/doc/current/tut/tut.html
(checked 2001/4/2)

http://www.python.org/doc/current/tut/tut.html

	INTRODUCTION
	OVERVIEW OF RADAR ECHO CLASSIFIER
	Anomalous Propagation
	Fuzzy Logic
	Scoring and Statistics

	WHY DID WE REPLACE OUR EXISTING IMPLEMENTATION?
	WHAT IS PYTHON?
	SOFTWARE ARCHITECTURE
	BENEFITS OF USING PYTHON
	CONCLUSIONS
	FUTURE DIRECTIONS
	ACKNOWLEDGEMENTS
	REFERENCES

