
J1.13                      RESPONSE OF HIGH RESOLUTION COUPLED SEA ICE/OCEAN MODEL TO
                                     THE ASSIMILATION OF ICE MOTION FIELDS DERIVED FROM
                                                             MICROWAVE SATELLITE IMAGERY

                                                                                Donald Stark*

                                                    Naval Postgraduate School, Monterey, California

                                                
*Corresponding author address: Donald Stark, Naval Postgraduate
School, Code OC/SD, Monterey,  CA 93943; email: stark@oc.nps.navy.mil

1 INTRODUCTION

Motivated by abundant sources of data and the need
to improve weather prediction capabilities, data
assimilation has a long history in atmospheric modeling.
Data assimilation applied to sea-ice models, on the
other hand, is in its infancy. Most of the investigations
over the past twenty years falls into one of three
categories: (1) the statistical interpolation of data into
gridded fields (Thorndike and Colony, 1983), (2)
advanced assimilation methods applied to simplified
“box” style sea-ice models (Thomas and Rothrock,
1989), and (3) the non-statistical assimilation of ice data
(Maslanik and Maybee, 1994). While the work of
Maslanik and Maybee comes closest, no one had
tackled the problem of statistically assimilating data into
a full-featured sea-ice model. This situation changed
with the work of Meier et al. (2000). They assimilated ice
motions derived from passive microwave imagery into a
fully dynamic-thermodynamic sea-ice model using
optimal interpolation, a statistical interpolation
technique. Their success motivated this project.
 This work expands on the results of Meier by moving
to a high resolution (18 km), fully coupled ice/ocean
model, and improving the assimilation machinery by
temporally varying the error co-variances. Two
simulations with identical forcing are run for a period of
five years. Both simulations use a coupled sea-
ice/ocean model, but one of the simulations also
includes the assimilation of ice motions. A comparison
of these two simulations shows that the error in the ice
motion field, subject to assimilation, is significantly
reduced. This study investigates the nature of that
decrease.

2 ICE MOTION DATA

In this study, two types of observational data will be
used. The first is an interpolated buoy motion product
generated by the Polar Remote Sensing Group at the
Jet Propulsion Laboratory (JPL). The second, also from
the Polar Remote Sensing Group at JPL, is a gridded
ice motion product derived from passive microwave
satellite images. Both ice motion products can be
downloaded from the Polar Remote Sensing Group web
site at www-radar.jpl.rgps.gov/rgps/ice_motion.html.

2.1 BUOY DATA

A gridded ice motion product, interpolated from the
International Arctic Buoy Program (IABP) buoy motions

is obtained from the from Polar Remote Sensing Group.
The twice daily, 100 km resolution buoy locations are
converted into a gridded field of daily ice velocities. The
velocity fields are then used to compute the spatial
distribution of the assimilative and prognostic model
error.

2.2 PASSIVE MICROWAVE DATA

The assimilation process takes an observed source
of motion data and combines it with a prognostic model
solution. For this study, the ice motion data or product to
be assimilated is the derived passive microwave
motions from JPL. These motions are derived from 85
GHz passive microwave brightness temperature fields
by applying a maximum cross-correlation feature-
tracking algorithm to a sequence of images (Kwok,
1998). The derived daily ice motion product has a
spatial resolution of 83 1/3 km, and is available from
October through the end of May. The product is not
available during the summer months due to moisture
contamination from cloud cover and surface melt
reducing the ability of the feature tracking algorithm to
differentiate ice structure in the brightness temperature
field.

3 NUMERICAL MODELS

Two numerical models are used for the comparison.
The first is a coupled 18 km dynamic-thermodynamic
sea-ice/ocean model (Zhang et al. 1999 & Zhang and
Semtner 2001). The ocean component is based on the
Parallel Ocean Climate Model (POCM) of Semtner and
Chervin (1992). The ocean model was adapted to the
Arctic Ocean (Parsons, 1995; Maslowski, 1997) with an
added free surface (Killworth et al., 1991). The second
model is a combined sea-ice/ocean and assimilative
model, which uses the Zhang and Semtner model as its
prognostic component.

The assimilative model optimally blends the
observed ice motions with the prognostic model motions
through a variant of the optimal interpolation technique
employed by Meier et al. (2000). Optimal interpolation
(OI) is a statistical assimilation method that uses the
observation and prognostic model error statistics to
blend the observation and prognostic motions in a way
that minimizes the error in a statistical sense.

The thermodynamic component of the sea-ice model
consists of a zero-layer approximation for heat
conduction through ice (Semtner, 1976) along with a
surface heat budget following Parkinson and



Washington (1979). The dynamic component consists of
the elastic-viscous-plastic (EVP) model of Hunke and
Dukowicz (1997), but employs the advection scheme of
Hibler (1979).

The ice model domain is an 18 km resolution, 300 x
360 point polar stereographic mesh that covers the
Arctic and GIN (Greenland, Iceland, and the Norwegian)
seas. The ocean model is run at 1/6 degree horizontal
resolution, with 30 vertical layers. The atmospheric
forcing for the simulations is provided by the European
Center for Medium-range Weather Forecasts (ECMWF)
atmospheric reanalysis product for the period 1992-
1993, continuing with the operational ECMWF analysis
product through 1997. These 4-hourly products are first
daily averaged, and then are linearly interpolated for
each time step.

The models are run on the Cray C90 and the Cray
SV1 at the Arctic Region Supercomputing Center
(ARSC). On the SV1, the prognostic model takes 20
minutes of CPU time to integrate a single model day.
The assimilative component adds about 19% to the
prognostic model timing.

4 ASSIMILATION STUDY

A test period from January 1992 through June 1996
is investigated. For this period, the absolute error of the
ice motions from the prognostic model and the
assimilative model are compared. The error for these
two products is constructed by projecting the 18 km
resolution ice motion fields onto the 100 km buoy grid
and then computing the (buoy–assimilative) and
(buoy–prognostic) difference fields. The daily absolute
error is then just the length or Euclidean norm of the
respective difference vectors. In section 4.1 the daily
difference vectors are averaged over a month and
displayed. This shows the spatial distribution of the error
on daily time-scales for a particular month. The
difference field for the observed product is shown for
reference. In section 4.2, a time series of the absolute
error of the three products is presented to illustrate the
spatial influence on the daily motion error.

4.1 SPATIAL DISTRIBUTION OF ERROR

The assimilation of the observed ice motions
reduces the absolute daily error for the entire Arctic
basin by over 50%. The spatial distribution of this error,
as well as the error in the observed and prognostic
motion products, is not uniform. The error for all three
ice motion products (Figure 1) is greatest in the
marginal ice zones (MIZ) of the Barents and the
Greenland seas. The relative magnitude of this error, as
might be expected, is least in the observed product (up
to 3 cm/s) and greatest in the prognostic product (2–8
cm/s). In addition, the prognostic model error in the
Chukchi Sea and off the North Slope of Alaska (Figure
1c) is large (3–7 cm/s). In fact, the magnitude of the
daily prognostic error is often as large as the ice
motions themselves!

The assimilative product is effectively a blend of the
observed and the prognostic products and as such

reflects the spatial details of the error from both. The
assimilative error (Figure 1b) is largest (up to 7 cm/s) in
the Greenland Sea, south of the Fram Strait. This
coincides with a similar range of error in the prognostic
product, and to a lesser extent (up to 3 cm/s), in the
observed product. The area south of the Fram Strait is
quite dynamic and the observed data is either non-
existent or too inaccurate for the assimilation to
overcome the prognostic model error. Further north, in
the Barents Sea and north of the Fram Strait, the
assimilation has the opposite impact. There the
assimilation reduces the range of the prognostic error by
roughly a third, from 2–6 cm/s to 1.5–4 cm/s, in spite of
the larger than average observed error. In addition, the
prognostic error in the Chukchi Sea is reduced by about
62%, from up to 8 cm/s in the prognostic product down
to less than 3 cm/s after the assimilation. The error
along the Alaska Slope is reduced by assimilation from
up to 5 cm/s to less than 1.5 cm/s. A reduction of
around 70%. The error in the Central Arctic is reduced
by assimilation from 1.5–3 cm/s to below 1.5 cm/s.
Again roughly a fifty percent reduction. In almost all
cases, the error for the assimilated product is less than
the prognostic error unless both the observed and the
prognostic errors are large. This is precisely why the
assimilated solution has localized spots of large error in
the Barents Sea.

4.2 TEMPORAL BEHAVIOR OF ERROR

In the previous section, various marginal ice zones
were considered. Here the temporal variability of the
absolute error for the observed, the assimilated, and the
prognostic products are examined for the same
locations, specifically north and south of the Fram Strait,
and the Barents and the Chukchi seas. Figure 2 shows
a typical time series of these locations for the period
from October 1992 through May 1993. Each time series
is an average of the five nearest grid points. The error
from the observed motions is represented with a dotted
dark line, the assimilation error with a thin solid dark
line, and the prognostic error with a thick gray line.

Figure 2a shows the temporal behavior of the error
in a region south of the Fram Strait. From this graph it
can be seen that for the brief periods where there is
data available at this location, the observed error tends
to be relatively small (>2.5 cm/s). Notice also that the
observed error increases after April, when the spring
thaw begins. The assimilative motion error for this
period tends to be no worse than the prognostic error. In
fact, when the observed data is actually available to
assimilate, the assimilative error is often less.

Figure 2b shows the temporal behavior of the error
for a region just north of the Fram Strait. For this
location the distribution of days with no observed data
are few and thinly spread. In addition, the observed
error is moderate. Together these two factors result in
the assimilative error being consistently less than the
prognostic error, on average about a third less. There
are two days during this period, the last week in
December and the end of May, where the assimilative
error reaches the maximum of 10 cm/s. Both of these



events correspond to a sudden lack of observed data to
assimilate, and a large prognostic error.

Figure 2c shows the temporal behavior for a region
of the MIZ in the North Barents Sea. For this location,

the observed data error, especially in the fall, exhibits a
number of large events. In spite of this, the assimilative
error is consistently better than, or at worst, the same as
the prognostic error. In these cases, the observed data
surrounding the location has a mitigating influence on
the error.

Figure 2d shows the temporal behavior for a region
in the Chukchi Sea. For this location, the assimilation
exerts a strong control on the error. The average
assimilative error for the eight-month period is less than
half the prognostic error. The few large error events
correspond to either periods of missing data or
extremely large error events in the prognostic product.

5 CONCLUSION

Based on this five year study, the optimal
interpolation assimilation process significantly reduces
the absolute error in the ice motion field. Over the whole
Arctic domain, there is a 50% reduction in the error. For
the MIZ, the reduction ranges from 10–60%, with the
low end being for the region south of the Fram Strait.
Over monthly and longer averages, the assimilation is
uniformly better than the prognostic model alone. On
daily time scales, the assimilation error is usually less,
and almost never worse, than the prognostic error. In
the few instances where the assimilative error was
worse than the prognostic error, it was by at most 1%.

Figure 1. Typical winter example (January 1992) of a
monthly average of the daily difference field with respect
to buoy motions (in cm/s) for the observed product (top),
the assimilated product (center), and the prognostic
product (bottom). Larger arrows correspond to greater
error.

Figure 2. A typical time series of the daily
absolute error (in cm/s) for October 1992 – May
1993. The assimilative (solid black), the prognostic
(solid gray), and observed (dotted) errors for fixed
locations in the Arctic.
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The amount of error reduction is strongly a function
of the error statistics of the particular geographic
neighborhood. While the quality of the observed data is
important, poor data or missing data is not automatically
fatal. For instance, while parts of the MIZ in the GIN sea
only show a marginal improvement, the MIZ in other
areas, such as the Barents and Kara seas, show
considerable improvement to the daily motion field.
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