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1. INTRODUCTION

Superrotation refers to zonally averaged zonal winds that
have a greater angular momentum than anywhere on the
surface of the earth. In order for the circulation to be iner-
tially stable, the angular momentum of the zonal winds must
decrease poleward; thus equatorial winds have the highest
angular momentum. In addition, the earth’s greatest an-
gular momentum is at the equator. Thus, the atmosphere
is superrotating if and only if the winds at the equator are
westerly.

On the earth, the equatorial tropospheric winds are
slightly easterly, so they have less angular momentum than
the earth’s surface at the equator. Thus, the earth’s tropo-
sphere is not superrotating. However, superrotation occurs
during the westerly phase of the Quasi-Biennial Oscillation
(QBO) in the stratosphere, as well as on other planets, such
as Jupiter and Saturn, and on our sun. These cases raise
the question of whether the earth’s troposphere could be
superrotating under earth-like conditions.

Superrotation has appeared in simple models of the
earth’s atmosphere. Suarez and Duffy (1992) obtained su-
perrotating states in a two-layer model when they applied a
zonally asymmetric tropical heating. For certain strengths of
the forcing, they found multiple equilibria in equatorial wind
strength. Once superrotation was established in the model,
the system would remain superrotating even if they removed
the asymmetric heating. Saravanan (1990) used a two-layer
model as well but applied a torque rather than asymmet-
ric heating to produce superrotation. Recently, Huang et al
(2001) found slight superrotation in a coupled GCM climate
change simulation with tripled C0O2. These experiments sug-
gests the possibility that tropospheric superrotation could
occur on the earth, though much more work is needed to
determine if these model results are realistic. Held summa-
rizes the research on superrotation in earth-like atmospheric
models (2001).

Suarez and Duffy and Saravanan attributed the bifur-
cations they obtained to a feedback between the forcing
(whether generated by asymmetric heating or an applied
torque) and the eddies. The forcing accelerates equatorial
winds, and the eddies tend to decelerate equatorial winds.
However, the effectiveness of the eddies decreases as the
wind speed increases. Thus, increasing the forcing leads to
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stronger equatorial winds and thus less deceleration by the
eddies, resulting in a positive feedback.

We looked for a similar bifurcation in an axisymmetric
shallow water model of the upper troposphere. The model
includes a torque that is directly applied to the equatorial
region. In addition, the transport of mass (and thus
momentum) from a non-moving lower layer can decelerate
the flow around the equator. This deceleration depends
on the wind speed at the equator, which depends on the
strength of the forcing. We are interested in whether this
feedback allows multiple equilibria for some ranges of the
forcing. Since the equatorial zonal wind is always westerly
when forcing is applied to this model, we looked for multiple
steady superrotating states, one weakly superrotating and
one strongly superrotating, for the same set of parameters.

2. THE MODEL

We modeled the troposphere using an axisymmetric (no
variation in the longitudinal direction) one-and-a-half layer
isentropic model on a sphere. The lower layer does not
move, but it can exchange mass with the upper layer, thus
affecting the height and zonal velocity of the upper layer.
The upper portion of the troposphere is modeled using the
shallow water equations for a spherical isentropic layer. The
model determines the zonal velocity, u, meridional velocity,
v, and height of the upper layer, h, as a function of time, t,
and latitude, ¢:
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where F' is an applied forcing. The system is relaxed to a
radiative equilibrium height, heq(¢), and
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is the deceleration of the zonal momentum due to mass
moving from the lower layer to the upper layer as part of
this height relaxation. Q is the rotation rate, a is the radius
of the earth, k is the frictional parameter, g* is the reduced
gravity, and T is the relaxation time. All values are in MKS
units.



The forcing F for the system is an applied torque centered
around the equator and constant in time, and it represents
a flux of momentum from the lower layer:

F = Fycos™ ¢,

where Fj is the forcing at the equator.

The height of the upper layer is relaxed back to the “ra-
diative equilibrium” height, heq, which simulates the effects
of radiation on the system. When radiation warms a portion
of air in the lower layer, its potential temperature increases,
and it moves to the upper layer, increasing the height of the
upper layer. When the upper layer cools, some air moves
down into the lower layer, decreasing the height of the up-
per layer. The radiative equilibrium height decreases away
from the equator and then goes to a constant near the pole:

heq:{

where hoeq is the radiative equilibrium height at the equa-
tor and ugeq is the corresponding geostrophic wind at the
equator.

The relaxation back to the equilibrium height also af-
fects the zonal momentum budget through term R in equa-
tion (1). Air that is brought up from the lower layer carries
with it the momentum from the lower layer. Since the mo-
mentum of the lower layer is less that that of the upper
layer, this process decreases the zonal momentum in the up-
per layer. However, air that moves from the upper layer
down to the lower layer carries with it the momentum of the
upper layer and thus does not affect the momentum in the
upper layer. Presumably surface friction returns the velocity
in the lower layer to zero. Note that the relaxation mass
flux also should affect the meridional velocity. However, we
have omitted this effect from equation (2) because v is very
close to geostrophic balance.

Term R is the key term in our model, because it provides
the positive feedback to the forcing. At the equator, the
forcing must balance the height relaxation term and friction.
Since friction increases as the forcing (and thus the wind
speed) increases, the height relaxation term is the required
term for a bifurcation in this system.

Figure 1 shows the steady state of the model with no
forcing. For this run, we used values of a = 6.37 x 10% m,
0 =17.292x107° rad/s, g* = 9.81x 0.1 ms™?, 7 = 900000
s, k=5x107° s7!, hoeg = 20000 m, ugeq = 60 m/s, and
a = 0.5. The number of grid points is 300. These are the
default values for all runs.

While the model uses similar parameters to those of the
earth, it is not entirely earth-like. The atmosphere is not
well-represented as two isentropic layers. The difference in
potential temperature between the equator and the poles is
about the same as the difference between the surface and
the tropopause. Thus, the real atmosphere does not have
an isentrope which divides the troposphere into an upper
and lower layer.
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Figure 1: Steady state of the model with no forcing. The
solid line is the computational model result. The dotted line
is u from momentum conservation, and the dashed line is
the radiative equilibrium result.

3. ANALYTICAL CALCULATIONS

In order to study the system more closely, we used a sim-
ple analytical model which approximates the full system of
equations. The analytical model seeks to describe the state
of the system using only u and h at the equator. By requir-
ing that u and h are in steady state at the equator, we can
determine which of these states is an equilibrium solution for
a given set of parameters. This information gives us an idea
of where to look for multiple equilibria in the full model.

The relation of the circulation to u and h at the equator
can be explored using a simple Hadley cell model similar to
the one used in Held and Hou (1980). The domain is divided
into two regions. Close to the equator, the solution for A
conserves angular momentum while towards the poles, the
solution is just the “radiative equilibrium” solution, heq. By
matching these two solutions, we can determine the critical
latitude, ¢, which separates them.

Equation (5) describes the radiative equilibrium solution.
To determine the angular momentum conserving solution,
hy,, assume the height is in geostrophic balance with the
angular momentum conserving wind:
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where ug is the zonal velocity at the equator. Integrating
the geostrophic terms in equation (2) using the small angle
approximation and the fact that up << Qa,

2a2 [uo ¢2 +Qa¢—4] ,
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where hg is the height of the layer at the equator.



Imposing continuity of h at ¢. and mass conservation and
assuming ug << Qa, hoeq = ho, and ¢. small yields equa-
tions for the critical latitude and the height at the equator
in terms of ug:
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UOeq -

In order for uo and ho to be in steady state, the ap-
plied torque at the equator must balance the friction and
the momentum exchange due to relaxation of the height to
equilibrium:

(ho < hoeq). (9)
Assuming the system is not far from radiative equilibrium,

we approximate the height in the denominator as a constant,
hoeq. Nondimensionalizing by

ho = HhOeq, Uuo = UUOeq;

equations (8) and (9) become:
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with ¢, p, and r all positive.

We are looking for solutions of these two equations for
which U < 1 and 0 < H < 1, since our analytical model
requires that uo < %oeq and 0 < ho < hoeq- Equilibrium
solutions are solutions of the cubic equation
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Otherwise, there is only one real solution, and we do not
expect multiple equilibria in our model.

Figure 2 shows the parameter region where the simple
model predicts three multiple equilibria. In this region, the
solution corresponding to the smallest u is stable while the
middle solution is unstable. Thus, model runs that start
with initial conditions between the lowest and the middle
solutions will equilibrate to the lower superrotating state.
When the third solution (highest u) is a valid solution, we
expect the system to go to this state if the initial conditions
are above the middle solution. However, the solution with
the highest w is generally not valid because u > wgeq; in
these cases, we expect that systems with initial conditions
above the middle solution will equilibrate to a higher u steady
state, for which we do not have a model. The stability of the
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Figure 2: Region of multiple equilibria in analytical model.
The dark region indicates values of £ and £ for which there
exist multiple equilibria. g corresponds to the strength of the
applied forcing; r corresponds to the friction; and p relates
to the Hadley circulation.

different equilibria can be verified using a potential function
(Moehlis, personal communication).

We further examined the feedback in this simplified
model. As the forcing increases, u increases, which in turn
decreases the Hadley circulation. Thus, less mass is brought
up from below to decelerate the upper layer. This decel-
eration can be thought of as a “damping” caused by the
relaxation of the height to the equilibrium height.

We examine how u changes as the forcing changes:

oU _

1 1
- ( —1)2 ) 2U(U-1)
O \pU—=1P+r/) 1+ Gy

When %—g goes to infinity, U must jump to a different solu-

tion. This quantity goes to infinity when
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The lower value corresponds the the maximum U of lower
branch, while the upper value corresponds to minimum U
of upper branch. (However, the upper branch is not well-
modeled by the model because U is usually greater than 1.)
When Z > % U never jumps to a different branch. When
r=20 (?i.e. frictionless case) there is an abrupt transition at
U=1.

We do not expect the computer model to match the
analytic model exactly, because the computer model does
not conserve angular momentum near the equator. The flux
of momentum from the lower layer decreases the angular
momentum in the computer model. However, the analytic
model helps us understand the basic mechanisms of the full
computer model.
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Figure 3: Steady state zonal velocity for Fop = 4 x 107
(dashed), 5 x 10~ 7 lower branch (dash dot), 5x 10™7 upper
branch (dotted), 5.8 x 10~7 (thin), 8 x 107 (thick) for Run
2.

4. RESULTS

We examined the stable steady states obtained by the full
model by varying the forcing magnitude for different sets of
parameters. In each run, there were four possible regions of
different behavior depending on the magnitude of the forcing
at the equator, Fp:

1. For small forcing, the system approximately agrees with
the simple analytical model. The only stable solution is
a Hadley-cell-like circulation with a small zonal velocity
at the equator. The dashed lines in Figures 3 through
5 show an example of the steady solution in this region.

2. For slightly higher forcing, the system has two steady
solutions. One approximates the expected Hadley cell
circulation, while the other has a higher u and h. The
dash-dot lines in Figures 3 through 5 show an example
of the steady lower branch solution while the dotted
lines show an example of the steady upper branch so-
lution in this region.

3. When the forcing is further increased, the system has
only one steady state. u is generally above ugeq, but h
is always below heq. The thin solid lines in Figures 3
through 5 show an example of the steady solution in
this region.

4. For the highest values of the forcing, hg is above hoeq-
Thus the only term in the equatorial zonal momentum
equation which can balance the forcing term is the fric-
tion term, and uo has only one possible value:

_
=2

The thick solid lines in Figures 3 through 5 show an
example of the steady solution in this region.
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Figure 4: Steady state meridional velocity for Fo = 4x10~7
(dashed), 5 x 107 lower branch (dash dot), 5 x 10~ upper
branch (dotted), 5.8 x 10~7 (thin), 8 x 10~7 (thick) for Run
2.

Run Description p T q
1 base run 0.051 0.0045 15000 xFp
2 narrower F (n =50)  0.051  0.0045 15000 xFy
3 k=1x10"8 0.051 0.009 15000 x Fyp
4 g* =9.81%0.2 0.0255 0.0045 15000 xFy

Table 1: Nondimensional parameters for each run.

The size and location of the regions varied from run to
run. The base run, Run 1, used the values given in section
2 and a wide forcing (n = 30). Table 1 describes how
the other runs differed from Run 1 and lists nondimensional
parameters for each run. Table 2 gives the ranges of the
various regions.

The first two runs study the effect of the width of F' on
the full model. Figure 6 shows how U changes with the
forcing in Run 2. Run 1 (not shown) looks similar. The
location of the multiple steady equilibria region is within the
range predicted by the simple analytical model. However,
the range is always less than that predicted by the simple
model. The region of multiple equilibria seems to be related
to where the model closely conserves angular momentum in

Run 1 2 predicted 2 3 4
1 0-3.8 40438 2.93-6.10 - 5.0-10
2 0-46 4.85.6 2.93-6.10 5.8-6 7-10
3 0-7.4 - 5.71-7.33 7.5-9.8 10.0-7?
4 0-3.7 - 2.85-3.66 3.8-4.8 5.0-10.0

Table 2: Ranges of Fy for the different solution regions.
The values are in 10~7 ms™2. A dash indicates that none of
the tested values of Fy corresponded to that region, though
there may be untested values which do correspond to the
region.



600 T

— — Region 1 // \\

— - Region 2 Lower PR
Region 2 Upper

— Region 3 ;1 \

= Region 4

400

200

h-heq

\
-200

"
—-400|-

V
-600 -

\
-800 L L L I

18F

[¢]
16F

o
14F

o
0.8

041

0.21-

-90
Latitude

Figure 5: Steady state difference between layer height and

relaxation height for Fy = 4 x 107 (dashed), 5 x 1077
lower branch (dash dot), 5 x 107 upper branch (dotted),
5.8 x 1077 (thin), 8 x 10~7 (thick) for Run 2.

the tropics.

We found no steady state region in Run 3 (Figure 7)
and Run 4 (not shown), though there are abrupt jumps
in U near the predicted transition point from multiple to

single equilibria), so there may be some very small region of
multiple equilibria at this transition point.

5. CONCLUSIONS

It is possible to get bifurcations in the superrotation
strength in an axisymmetric model for some parameter
ranges. When bifurcations exist, the stable equilibria lie
along two branches of U values as the forcing is changed.
On the lower branch, damping due to height relaxation
increases with increasing Fp; on the upper branch, the

Figure 6: Nondimensional zonal wind at the equator for
given values of the equatorial forcing for Run 2.

Figure 7: Nondimensional zonal wind at the equator for
given values of the equatorial forcing for Run 3.

damping decreases with increasing Fy. Although the simple
model approximately predicts where the full model will have
multiple equilibria, the range is smaller than predicted and
sometimes multiple equilibria are not present at all. The
presence and location of the bifurcation has something to
do with how well angular momentum is conserved in tropics,

which depends on forcing. However, the exact relationship
is not clear.
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