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1. Introduction

Despite the well-established equations of motion for

Newtonian fluids, complete description of atmospheric

and oceanic motion remains an elusive goal due to a

vast range of scales involved.  In practice, one is only

interested in dynamics and kinematics at certain “large”

scales in time and space, and hence it is more

economical to consider suitably “averaged” equations.

Since averaging relinquishes information at small

scales, the effects of unresolved eddies on the resolved

motion must be estimated and ultimately parameterized.

For tracer transport, this operation is commonly

expressed in the flux-gradient relationship

′ ′ ≡ − ∇v Kq q ,           (1.1)

where v and q are the advecting velocity and advected

scalar, bar and prime denote an unspecified Eulerian

mean (spatial or temporal) and deviation from the mean

(i.e., eddy), and K is a second-order tensor.

If the lhs of (1.1) denotes unresolved eddy flux,

which is to be modeled by the rhs, then the problem is

one of flux closure: it amounts to expressing K in terms

of the mean (i.e., resolved) quantities of the flow.

Alternatively, (1.1) can be seen as a diagnostic relation

for K , given the (resolved) eddy flux and the mean

scalar gradient.  In this paper, we are primarily

concerned about this latter situation in the context of

mixing diagnostic.

Even though (1.1) has formal similarity to the

Fickian model of molecular diffusion, it by itself does not

constrain the nature of eddy flux in any way, diffusive or

otherwise: for an arbitrary eddy flux and mean gradient,

one can always find K that satisfies (1.1).  Furthermore,

K is not unique, since any ′K  that satisfies ′∇ =K 0q

can be added to K without affecting (1.1).

It is easily verified that if K is symmetric and

positive definite, then the eddy flux is down the mean

gradient and in that sense the transport is diffusive.  K is
then a measure of local eddy diffusivity.  However, as it

is well known, for K to be always downgradient with

respect to a given mean state, the flow must satisfy

quite stringent conditions, even if q is a passive scalar.

Among the exceptional cases wherein K is known to be

diffusive are: (i) when the amplitude of spatial eddy is

small and growing in time (Plumb 1979); and (ii)

homogeneous turbulence with (nearly) constant mean

gradient (McIntyre 1993).  These types of flows satisfy

an important prerequisite for the eddy diffusivity

concept: separation of scales between eddy and mean

gradient (the former through the smallness of eddy

amplitude and the latter through the greatness of the

variation scale of the mean gradient). This permits the

eddy diffusivity to be defined locally.

In reality, there is never a clear scale separation in

large-scale transport of the atmosphere and ocean.  The

size of eddy is often comparable to, and even exceeds,

the scale of the mean gradient.  That is, coherent eddies

are embedded in a very inhomogeneous environment.

Under such circumstances, K  fails to be local: the

nature of transport may be irreversible, but it involves

excursion of fluid parcels over a long distance so the

local gradient has little bearing on the eddy flux.  As a

result, the flux can be up or down the gradient,

mitigating the utility of eddy diffusivity as a diagnostic of

mixing.

The above point is illustrated in Fig.1.  A tracer,

initially only a function of y, is subjected to advection by

a steady 2D flow, Ψ = cos cosx y , and a constant

subgrid-scale diffusion D.  As time goes on, the tracer

contours are wrapped around the streamlines, and an

increasingly complex geometry emerges (Figs.1b-d).

[An analytic solution for the inviscid case was given by



Warn and Gauthier (1989) in terms of Jacobi elliptic

functions.]  The solid curve in Fig. 1e shows the time

dependence of eddy diffusivity K, defined as domain-

averaged northward eddy flux divided by the domain-

averaged southward gradient.  This denominator is fixed

by prescribed tracer concentrations at the zonal

boundaries.  Initially K is positive and grows, whilst the

tracer is dispersed meridionally (Fig.1b).  However, as

the tongue of tracer wraps around, K turns negative at

t ≈ 6 .  This suggests that transport is reversible to some

degree, perhaps not surprisingly considering the

periodicity of the flow.  On the other hand, change in

tracer geometry is unmistakably irreversible.  Therefore,

this example demonstrates that eddy diffusivity does not

necessarily capture the essence of mixing.

One way of avoiding the difficulty of nonlocalness

and achieving tighter integration of diffusivity and mixing

is to abandon (1.1) and redefine diffusivity with respect

to moving fluid mass.  In particular, Nakamura (1996)

used area enclosed by tracer contour as a coordinate of

2D mixing.  The area is invariant under advection by

nondivergent flows, so the “transport” in the area

coordinate is attributed to nonconservative processes,

including unresolved mixing (ultimately molecular

diffusion).  Nakamura showed that the role of eddy

stirring is to enhance tracer gradients and perimeter
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Figure 1 (a)-(d) Passive tracer field advected
by steady flow Ψ=cos(x)cos(y) and diffused by
constant subgrid difffusion D = 0.0005.  The initial 
condition is a uniform gradient in y, and the 
concentration is fixed at y = − 0.5π, 0.5π to maintain
domain-averaged gradient. (a) t = 0  (b) t = 3  (c) 
t = 10  (d) t = 24.  (e) Time dependence of domain-
averaged eddy diffusivity.  Solid curve: conventional
eddy diffusivity (K).  Dashed curve: effective eddy 
diffusivity (Keff).  Although the tracer is irreversibly
wrapped into filaments, K swings into negative 
values due to nonlocal effect.  Keff is by definition
positive, and increases appreciably as tracer 
cascades to smaller scales.  After the memory of
initial condition is lost, the two diffusivities attain 
similar magnitude, which is about two orders of
magnitude larger than the subgrid diffusivity D.



length of area, thereby enhancing effective diffusivity.

Effective diffusivity is positive by construction (i.e., the

flux is always downgradient) and large where the

geometry of tracer contour is complex and small where

it is smooth—a more truthful representation of mixing

than the traditional eddy diffusivity.

While mathematically rigorous and useful in certain

applications (e.g., Nakamura and Ma 1997, Allen et al.

1999, Haynes and Shuckburgh 2000ab, Allen and

Nakamura 2001), the Lagrangian-mean nature of

effective diffusivity imposes limitations of its own.  The

area coordinate makes no reference to geographical

locations, so it is difficult to speak of “local” diffusivity (or

mixing) with respect to the surface of the Earth.  Also,

effective diffusivity is an average on a closed tracer

contour and it says nothing about the variation of

diffusivity along the contour.

In view of this, it seems worth revisiting (1.1) and

re-formulating Eulerian-mean equation in search for a

better measure of local eddy diffusivity and mixing.

2. Synopsis and summary

Due to limitation of space, only a brief outline of

formalism is presented below.  A more complete

discussion will be found in Nakamura (2001).  We shall

decompose eddy flux in (1.1) into along-gradient and

cross-gradient components and single out the along-

gradient component (that is, component normal to the

isosurface of q ).  The scalar eddy diffusivity in this

dimension is

K
q q

q

T
= ∇ ∇

∇

( ) K
2 .           (2.1)

Using advection-diffusion equation for incompressible

flow with constant molecular diffusivity D, it is readily

shown

K D K Keff+ = +∗ ;         (2.2a)
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K ∗  represents dispersion of tracer contours about their

mean positions.  The second term of the numerator of

(2.2b) includes triple eddy correlation, which is the

cause of the nonlocal effect when the amplitude of eddy

is large.  Hence K ∗  can take either sign.  In contrast,

Keff  is positive by definition and constructed only from

local quantities.

(2.2c) clearly shows that Keff  represents the effect

of molecular diffusion, but its effectiveness is amplified

by the factor ∇ ∇q q2 2
.  This ratio, which we call

mixing efficiency, roughly measures the average square

wavenumber of eddies against the square wavenumber

of the mean, and hence quantifies complexity of local

tracer geometry.  When there is no eddy (q q= ), Keff

reduces to D, while K K= =∗ 0 .  Keff  is analogous to

the effective diffusivity in the area coordinate (Nakamura

1996), in that it represents small-scale diffusion

amplified by the geometrical complexity of tracer.

We argue that Keff  is a useful measure of local

eddy mixing.  The dashed curve in Fig.1e shows the

time dependence of domain-averaged Keff  associated

with the mixing event shown in Figs.1a-d. Keff

increases with time as stirring creates increasingly

complex tracer geometry.  Although the magnitude of

Keff  is much smaller than K  or K ∗ , it is still about

two orders of magnitude larger than the subgrid

diffusion D.

Figure 2 shows an example of mixing efficiency

diagnostic, using the tropopause level potential vorticity

and nitrous oxide simulated by GFDL SKYHI GCM for

the month of March.  In both spatial and temporal

means, the diagnostic shows very clearly the existence

of minimum mixing efficiency (i.e., mixing barriers) along

the axis of jetstreams.  The barrier locations are more

zonally localized in the Northern Hemisphere than in the

Southern Hemisphere.
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Figure 2  Natural log of PV mixing efficiency (in shades) and streamfunction (solid contours) on 320K isentropic 
surface of SKYHI GCM.  (a) with spatial average applied to instantaneous fields at 12:00 UTC 1 March.  At each 
longitude-latitude grid, average is taken over surrounding grids within radius R = 800km.  (b) same as (a) but with 
temporal average over a 10-day period starting from March 1. 


