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P5.12 TO WHAT EXTENT ARE SEA LEVEL VARIATIONS DUE TO THE EXPANSION
OR CONTRACTION OF THE WATER COLUMN?

P. Ripa1

CICESE, Ensenada, Baja California, México

A coincidence between variations of observed and
steric sea level (e.g. Pattullo, Munk, Revelle and
Strong 1955)

∆η =
∫ 0

−H∗
(αT ∆T − αS∆S) dz, (1)

where z = −H∗ represents the ocean bottom or a
very deep level, may be interpreted in two different
ways:

1. It expresses the expansion or contraction of the
water column due to the local heat and fresh
water fluxes through the ocean surface (e.g.
Gill and Niiler 1973).

2. It shows evidence of surface intensified baro-
clinic motion in a deep enough ocean (e.g. Ripa
1997).

Heat and fresh water fluxes may indirectly contribute
to 2 through the set up of baroclinic pressure gradi-
ents. The validity of both explanations is explored
here, in wavenumber/frequency space, with a two-
layer model in which salinity, temperature, and hori-
zontal velocity are assumed to be depth independent
in the top one. This type of model is not new. It
was first developed, to the best knowledge of the au-
thor, by Dronkers (1969) in a one-layer rigid bottom
set up, with the purpose of studying the tides in a
coastal area. Afterwards it was used in a one-layer
reduced gravity setting by Lavoie (1972) and Schopf
and Cane (1983), in an atmospheric and oceanic
problem, respectively. It has been used by many
other authors ever since, but always with volume-
conserving equations.

In (Ripa 1999) it is shown that neglecting vertical
variations within an heterogeneous layer is a good
approximation, even with finite horizontal variations
of the density and velocity fields, as long as the per-
turbation horizontal scale is not much smaller than
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the resolved deformation radii. Here, the field varia-
tions will be considered infinitesimal –not finite– and
therefore we ought to be in safe ground (within the
same wavelength-scale restriction). One way to see
these limitations imposed by this approximation is
through the analysis of the free modes of the system.
These are the usual Poincaré and Rossby waves (PW
& RW), and a “force-compensating mode” (FCM),
which maintains a vanishing velocity by balancing
the pressure forces related to the heterogeneity of
the top layer and the layers thickness (Ripa 1996).
In (Ripa 1999) it is shown that the FCM is related
to the RW in a higher vertical mode, and that it has
ω = 0 even with β effects, as if having a vanishing
deformation radius. Consequently, the model fails
at very short scales, of the order of the deformation
radius of the (ill resolved) higher vertical mode.

Linearizing the model equations, it follows that
the right hand side of (1) is made up of two parts:
the integral within the top layer, ηT + ηS , with

∂tηT =
αT

ρ0Cp
Q, ∂tηS = εs (P − E) ,

plus the integral across the interface, −εζ, where

εs = αSS1, ε = αT (T1 − T2)− αS (S1 − S2) ,

ζ is the interface elevation field, and (Tj , Sj) are the
mean temperature and salinity in the top (j = 1)
and bottom (j = 2) layer. Typical oceanic values
are ε ≈ 1 − 4 × 10−3 and εs ≈ 2.5 × 10−2. As
an example, consider that Q has an amplitude of
200W m−2 at ω = 2 × 10−7 s (one cycle per year);
then ηT will have an amplitude of about 6 cm. On
the other hand, if P − E has an amplitude of 3 ×
10−8 m s−1 (one meter/year) at the same frequency,
then the amplitude of ηS will be about 4 mm, but
that ε−1

s ηS will be about 16 cm.
The surface inputs of fresh water (P − E) and

heat Q produce directly the density changes rep-
resented by (ηT + ηS) and indirectly, through the
set up of pressure gradients, those represented in ζ.



By linearizing the evolution equations, the total sea
level forced by those fluxes is calculated, say

E − P 7→ ηE ,

Q 7→ ηQ,

so that η = ηE +ηQ. Two conditions must be met in
order to attribute sea level variations to the expan-
sion or contraction of the water column. First, the
actual sea level produced by the surface fluxes, ηE

& ηQ, must be close to ηS & ηT . Second, this result
must be obtained with a mass-conserving model (i.e.
one that allows for the thermohaline expansion of
seawater) but not with the usual volume-conserving
model (with a non-divergent three-dimensional ve-
locity field) (see Greatbatch 1994).

Both hypothesis can then be cast, for the simple
model used here, in the form

H1 : η ≈ ηS + ηT only for λ = 1

H2 : η ≈ ηS + ηT − εζ for any λ
(2)

where λ is a flag used to distinguish the usual volume-
conserving models (λ = 0) from the mass-conserving
ones (λ = 1). These hypotheses are tested for all val-
ues of the horizontal wavenumber k and frequency
ω of the forcing.

The whole information on k and ω is contained in
a single variable (see figure 1) with two quite differ-
ent normalizations, κ0 & κ1, where κ0 = 1 (κ1 = 1)
is the dispersion relation of barotropic (baroclinic)
Poincaré waves and κ0 À κ1. More precisely

κ0 =
k2 + l2

ω2 − f2
g (H1 + H2) ,

κ1

κ0
= εγ (1− γ) ≤ 1

4ε,

where 1 − γ & γ are depth fraction of the top and
bottom layers, i.e.

γ =
H2

H1 + H2
.

For ω2 ¿ f2 it is κ ∼ − (
k2 + l2

)
R2, where R is the

corresponding Rossby radius of deformation. Both
parts of the solution are found to be

ηE (κ)
ηS

=
1
εs

+ λ− 1
2 − 1

2γ

1− κ0
+

1
2γ + γ2 ε

εs

1− κ1
+

1
2

(3a)

ηQ (κ)
ηT

=
λ− 1

2 − 1
2γ

1− κ0
+

1
2γ

1− κ1
+

1
2

(3b)

+ O (ε) for sea level, and similar expressions for ζ
and the velocity fields.

The first two parts are forced barotropic and
baroclinic waves that vary continuously, as the fre-
quency decreases from superinercial to subinercial,
from Poincaré-like to geostrophic-like (Ripa and Zavala-
Garay 1999). The factor 1−κ in the denominators is
proportional to (k − k+ (ω)) (k − k− (ω)) where, for
superinercial frequencies, k± (ω) are the inverse of
the dispersion relation of PW. In the forced prob-
lem there are two eingenvalues k for each ω, even
though in the free waves problem there are three
eigenvalues ω for each k (Philander 1978, Ripa and
Zavala-Garay 1999). For subinertial frequencies, k±
are complex. However, if we had included effects
of Earth’s curvature, there would be another reso-
nance, with k± real, corresponding to the dispersion
relation of the RW. The last part of the solution is
the “force compensating mode”.

Since κ1 ¿ κ0, the variations of ηQ or ηE occur
in quite different scales and consequently the proper-
ties of the solution are discussed in different regions.
(These are regions in wave number/frequency space;
their names reflect the size of k for fixed ω.)

Very long scales: κ0 ¿ 1
This solution is giving by (3) with κ0 = κ1 = 0,
which gives

η = (1/εs) ηS + λ ηT ,

ζ = 0.

No perturbation is transmitted to the interface ele-
vation and the lower layer.

The main consequence of the effective evapora-
tion is to raise or lower the surface by adding or
subtracting water; its effect on water density is an
O (εs) less important: ∂tηE = (1/εs) ∂tηS = −Ee.
Consequently, this response can be safely modelled
with a volume-conserving model.

Heat flux, on the other hand, raises or lowers the
sea surface by means of a true expansion or con-
traction of the upper layer. This effect can only be
modelled with a mass-conserving model (λ = 1); a
volume conserving model (λ = 0) gives an inaccept-
able incorrect result. Hypothesis 1 from the Intro-
duction is satisfied here, just for the heat flux forced
part of sea level.

Long scales: κ0 = O (1)
At these scales it is, to dominant order is

η =
1/εs

1− κ0
ηS +

λ− (
1
2 + 1

2γ
)
κ0

1− κ0
ηT ,

ζ =
(γ/εs)κ0

1− κ0
ηS +

γ
(
λ− 1

2 − 1
2γ

)
κ0

1− κ0
ηT .



The structure of the response in wavenumber/frequ-
ency space is dominated by the forcing of the barotro-
pic mode. As before, a mass-conserving model (λ =
1) is essential for the correct evaluation of ηQ, but
hypothesis 1 is not necessarily satisfied. However,
note that

ηQ − ηT = 1
2

(1− γ) κ0

1− κ0
ηT + O (ε) ,

and therefore hypothesis 1 is realized for an infinites-
imally shallow upper layer, γ → 1, if the forcing is
sufficiently far from resonance 1− κ0 À 1− γ.

Medium scales: κ−1
0 ∼ κ1 ∼

√
εγ (1− γ) ¿ 1

The solution is giving by (3) with κ0 →∞ and κ1 =
0, namely

η = 1
2 (γ + 1) (ηS + ηT ) + γ2 (ε/εs) ηS ,

ζ = − (γ/εs) ηS − γ
(
λ− 1

2 − 1
2γ

)
ηT .

The coefficient 1
2 (γ + 1) comes from the contribu-

tions of the baroclinic and the force compensating
modes. If γ → 1 (i.e. a infinitesimally thin upper
layer) it is η ≈ ηS + ηT . Note that this effect is
not due to the expansion or contraction of the up-
per layer because the same result is obtained with
both a volume conserving (λ = 0) or a mass con-
serving (λ = 1) model. Rather is a confirmation of
hypothesis 2, namely

η + εζ = ηS + ηT + O (γ − 1) + O (ε) .

Short scales: κ1 = O (1)
At these scales it is

η = 1
2

1 + γ − κ1

1− κ1
(ηS + ηT ) +

γ2ε/εs

1− κ1
ηS ,

ζ = − 1
2ε−1 κ1

1− κ1
(ηS + ηT )− ε−1

s

γ

1− κ1
ηS .

The structure of the response in wavenumber/frequen-
cy space is dominated by the forcing of the baroclinic
mode. If γ → 1 it is

η + εζ =
(

1− 1
2

1− γ

1− κ1

)
(ηS + ηT ) + O (ε)

and therefore hypothesis 2 is satisfied if the forcing
is sufficiently far from baroclinic resonance 1−κ1 ¿
1− γ.

Very short scales: κ1 À 1

This solution formally corresponds to (3) with
κ0 → ∞ and κ1 → ∞, which leaves just the force-
compensating mode,

η = 1
2 (ηS + ηT )

ζ = 1
2ε−1 (ηS + ηT )

This means that hypothesis 2 is verified

η + εζ ∼ ηS + ηT .

However, as mentioned above, the validity of model,
namely, of keeping the dynamical fields in the upper
layer as depth independent probably breaks down
at these short scales. Note, for instance, that with
more vertical structure (e.g. one more layer) in the
model setup, there would be terms proportional to
1/ (1− κ2) due to the second baroclinic mode, where
κ2/κ1 is typically around 4.

The coincidence (1) between the actual sea level
and the steric integral may or not be an observa-
tional fact. Its explanation, in particular, one of
the two hypotheses stated in the first paragraph,
is model dependent. With the simple model used
here, the first hypothesis is realized only for the heat
flux forcing and for very long scales (κ0 ¿ 1). It
is also realized for long scales (κ0 ∼ 1) if the up-
per layer, where the heat is absorbed, is very shal-
low (γ ∼ 1). The calculations made by (Gill and
Niiler 1973), with a different model, roughly corre-
spond to −30 < κ0 < 0 and ω ¿ f ; therefore their
conclusion that “steric changes in sea-level [are] pro-
duced by expansion and contraction of the water col-
umn above the seasonal thermocline due to changing
fluxes of heat and water across the surface” may de-
pend upon the shallowness of the thermal forcing.
Greatbatch (1994) proposed to evaluate sea level in
rigid-lid volume-conserving numerical models by

∂tη +∇ ·
(∫ surface

bottom

u dz

)
=

αT

ρ0Cp
Q̄

where Q̄ represents a global average. Again, the
success of this recipe may depend upon the thickness
of the heat absorbing layer.

Hypothesis 2, on the other hand, is related to
the dominance of surface intensified baroclinic sig-
nals, which may be free waves or wind-forced mo-
tions, totally independent of the fresh water and
heat surface fluxes (see Ripa 1997). As far as these
buoyancy forcings are concerned, and for the present
model, hypothesis 2 is realized for very short scales
(κ1 À 1). In addiction, it works for short (κ1 ∼ 1)
and medium (κ−1

0 ∼ κ1 ¿ 1) scales if the top layer



is sufficiently shallow (so that the baroclinic signal
is surface intensified). In any case, these effects can
be modelled with the usual volume-conserving equa-
tions.

This work has been supported by CICESE’s reg-
ular funding.
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Figure 1: Definition of variable κ, used with dif-
ferent normalizations, defined by the choice of c2.
The heat input (output) Q through the ocean sur-
face, with wavenumber k and frequency ω, produces
a sea level ηQ, part of which, ηT , corresponds to
the direct warming (cooling) of an upper layer, but
most of ηQ is due to the pressure gradient generated
by Q. However, in the shaded region (κ ¿ 1) and
for the κ corresponding to the barotropic mode, it
is ηQ ' ηT . In order to obtain this result, a model
must conserve mass instead of volume, i.e. the three-
dimensional velocity field must have the possibility
of a non-vanishing divergence.


