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A. Introduction

Although the topography has long been recog-
nized as playing a major role in determining ocean
atmosphere circulation, aspects of this interaction
remain poorly understood. Recent parametrizations
[7] have been used to argue that for ocean circu-
lations the important interaction is not the topo-
graphic gravity drag but the interaction between
turbulent vorticies and the topography. Although
there exist tractable closure theories for flow over
topography these have been for ensembles of ran-
dom topography with zero mean value. These mod-
els unfortunately say little about the effect of the
mean topography of the ocean or atmosphere on the
structures of the mean flows nor can they comment
on the problem of parametrizing the effects of the in-
teraction of subgrid-scale turbulent eddies with the
mean topography.

In this context we have developed a non-
Markovian closure model consisting of direct in-
teraction closure equations for barotropic flow over
mean (single realization) topography, with and with-
out non-Gaussian restarts. The closure, established
on the basis of a quasi-diagonal direct interaction
approximation(QDIA), is compared with ensemble
averaged direct numerical simulations (DNS) for
severely truncated two-dimensional Navier-Stokes
flows. The model incorporates equations for the
mean vorticity, vorticity covariance and response
functions [4], and is formulated for discrete spec-
tra relevant to flows on the doubly periodic domain.
This procedure allows the unambiguous comparison
between the closure and the DNS as well as allowing
for the incorporation of all interactions both local
and non-local. A significant computational efficiency
is gained via the periodic truncation of the poten-
tially long time-history integrals where the closure
and meanfield equations are restarted using both
two and three-point cumulants as new non-Gaussian
initial conditions in both the mean and fluctuating
fields. The closures and DNS are compared in 80-day
integrations employing typical meteorological time
and space scales in inviscid, viscous decay and forced
dissipative experiments.
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The system demonstrates the required conserva-
tion laws in the inviscid and forced dissipative sys-
tems ie. kinetic energy and potential enstrophy, as
well as satisfying the canonical equilibrium relation.

B. Barotropic flow over topography

The evolution equation for two dimensional flow
over a fixed topography on a periodic f-plane (0 <
z < 2m) ,(0 < y < 2m) with no explicit large-scale
flow is simply the nondimensional barotropic vortic-
ity equation which takes the form
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where f0 is the bare forcing. The vorticity is given in
terms of the stream function. We make the assump-
tion that the variation in the bottom topography
is small and write the vorticity equation in spectral
form as
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where k = (k2 + k;)l/2 and (_x = (§ are conjugate.
The interaction coefficients are governed by the
following relationships
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where
K(k,p,q) + K(p,q,k) + K(q,k,p) =0 (5)
by cyclic symmetry.
For an ensemble of flows satisfying eqn(2) we may

express the vorticity in terms of the ensemble mean
((x) and the deviation from the ensemble mean ( i.e.
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hence we may write equations for the ensemble mean
and the deviation with forcing f = (f2) + f2. The
single time cumulant is defined as

Cp-alt:s) = ((-p(t)C-q(s))- (7)

The derivation of the closure equations can be found
in Frederiksen [4] and we only present numerical re-
sults here. The closure is achieved via a generali-
sation of an approach due to Kraichnan (1964) [10]
allowing the off-diagonal 2-point cumulant ie

Cx(t, t') = Cx_x(t,1) (8)

to be represented in terms of diagonal cumulant and
response functions and via a similar argument the
off-diagonal response function
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The most important integral invariants in the system
are those that are quadratic in 1, namely the total
kinetic energy and the potential enstrophy. The ex-
istence of the quadratic invariants implies stability

for the stationary state [1], conditions for which can
be readily derived via canonical equilibrium theory.
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C. QDIA and CUQDIA closures versus DNS

DNS and closure results are presented for k.., =
3 with circular truncation of the whole wavenum-
ber space, corresponding to the system having 28
components. Although k4, = 3 represents severely
truncated 2-D turbulence there remain sufficient de-
grees of freedom such that the systems are mixing
[11]. As noted by Frederiksen et al(1994) [5] the
use of discrete spectra allows not only the incorpo-
ration of all interactions both local and nonlocal but
also enables the detection of systematic errors due
to the closures with no ambiguity due to different
formulations with discrete and continuous spectra.
We have used typical meteorological time and space
scales. The space scale used is the earths radius
r = 6.37122 x 10%m and the time scale of v/2Q~1!
where ) = 7.292 x 107257 ! is the earths angular ve-
locity. The nondimensional time step we have used
is 1.11375 corresponding to 1/8" of a day.

The size of the timestep is determined largely by
the numerical stability of the DNS calculation but
also in part due to the need for good energy conser-
vation in the closure equations. The forced dissipa-
tive experiments have a random forcing given by
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with
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where a and b are parameters determined by the en-
ergy and potential enstrophy for the inviscid system.
The corresponding condition for canonical equilib-
rium for inviscid flow over topography on the doubly

periodic domain is given by
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The required choice of random forcing in the mean
field term to ensure that the closures will asymptote
to the equilibrium solutions eqns(11 and 13) in the
forced viscid case are given by
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The closure equations have Gaussian initial con-
ditions, with the subsequent restarts using non-
Gaussian initial conditions via the two- and three-
point cumulant terms. The DNS results are aver-
aged over 5000 realizations with the real and imagi-
nary parts of (i (t) at ¢ = 0 having a joint Gaussian
distribution.

In the case where the initial mean-field (¢ (0))
is zero the resulting mean-field evolution is due en-
tirely to the topography (figure 1). We note that
the mean-field develops relatively quickly and is al-
most at full strength after an integration period of
only 10 days. The restart procedure is employed
at every 20 timesteps. The comparison between
the DNS and CUQDIA shows good agreement with
both systems evolving to a stationary state. Be-
tween T = 20(t = 160), and T = 50(¢ = 400) days
(timesteps) the CUQDIA exhibits slight erroneous
oscillations as seen previously in the isotropic ho-
mogeneous calculations of Frederiksen et al (1994)
[5] and the original work of Rose (1985) [13]. The
oscillations are to some extent dependent on step
size however are largely due to the restart time 7.
A doubling of the restart time significantly reduces
such oscillations however this is at the expense of
computation time. In the absensce of topography an
initially non-zero mean-field dissipates as the energy
is transfered to the closure equations with the result
that as t — oo we are left with a purely fluctuating
field.
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FIG. 1. Due to degeneracy we have displayed only the
first 6 spectral components and the total. Restarts every
20 timesteps.
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FIG. 2. Comparison of the total field with parameters
as for figurel with DNS.

Holloway and Hendershott [8], Bretherton and
Haidvogel (1976) [2] and later Carnevale and Fred-
eriksen [3] pointed out that the enstrophy cascade
associated with turbulent eddies in two-dimensions
implies that for initially turbulent flow above topog-
raphy the flow will tend to approach a stable state
of minimum enstrophy for a given kinetic energy. In
the case where the topography is random this min-
imum enstrophy state has steady streamlines pro-
portional to the topography on the larger scales but
with some smoothing of the finer features. Herring
[6] also considered the problem via a simple exten-
sion of Kraichnan’s isotropic DIA [9] and a heuristic
theory based on the test-field model developed by
Leith [12] finding also that the vorticity was strongly
locked to the topography at large scales.
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FIG. 3. Restarts every 20 timesteps.
Topography hix =0
Mean-field ((k(0)) = 1.0e — 2 x Cx(0,0)
Twice enstrophies Ck(0,0) = a_f% =Cy!
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FIG. 4. Without restarts.
Viscosity 3.378 x 107*
Twice enstrophies forcing F = 20k*C}?
Mean-field forcing(f) = k*(¢;?)

Topography hxh_x = “(‘,'c'—:)k;

Mean-field (¢k(0)) = Cik=(1,1)(0,0)

Twice enstrophies as before ie Ck(0,0) = HL:,CE = Cy*
except that Ci—(1,0)(0, 0) has been perturbed by a factor
of 100.

a = —5.969 x 10°

b= 7.444 x 10°

Our results are in good agreement with the idea
that the turbulence evolves into a steady (in this
case stationary) state in which the flow on the larger
scales is along contours of constant hy.

In the viscid forced case (figures 4-6) the mean-
field is seen to undergoe a reversal (sign change) in
order to reach equilibrium. This is a direct result
of the choice of initial conditions and the equilib-



rium condition eqn(13). As the mean-field in figure
4 is relatively weak the reversal occurs early in the
evolution. In figure 5 we have an enhanced initial
(¢k(0)) and now see a drammatic difference in the
time each of the spectral components changes sign.
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FIG. 5. Conditions as for the previous figure however
the strength of the initial mean-field has been signifi-
cantly enhanced ie Mean-field ((x(0)) = \/Cxk=(1,1)(0,0)
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FIG. 6. The total field is displayed with parameters
as for figure 5.

D. Conclusion

We have demonstrated the development of a
tractable closure model for inhomogeneous flow over
mean (single realization) topography. Although the
results presented are for low resolution severly trun-
cated Navier-Stokes flow the model obeys canoni-
cal equilibrium conditions, and energy conservation
requirements. A formal restart procedure has also
been developed in the hope of reducing the numer-
ical task. The model run at high resolution offers
a tool for the study of the eddy topographic force,
eddy viscosity, and stochastic backscatter and this
is our current focus.
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