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1. INTRODUCTION

In physical oceanography, two streamfunctions
are of particular practical importance. These are:
1) the barotropic streamfunction ¥, related to the
vertically-integrated mass transport U = f_o gudz
by U =z x V¥; and 2) the meridional overturning
streamfunction &, related to the zonally-integrated
meridional mass transport (L{v), L{w)) by

L{v) = =%,  L{w) =&, (1)

where (.) is the zonal average. ! ¥ is important
because its determination is a prerequisite to that of
the total pressure field, while the importance of ®
lies in its strong link to the oceanic poleward heat
transport. These quantities are thus central to the
issue of ocean climate.

The main theoretical challenge is to express ¥ and
® in terms of the external wind and buoyancy forc-
ing. The simplest mathematical model to study @
and ¥ is arguably composed by the viscous/diffusive
planetary geostrophic equations (PGE), which con-
tain as particular cases most mathematical models
underlying all large-scale ocean circulation theories:

fzxu+Vp=AgAu+ Ayu,, (2)
p,—b=0 (3)

divu+w, =0 (4)

u.Vb+ wh, = Q, (5)

where u = (u,v) is the horizontal velocity; w is the
vertical velocity; b = g(po — p)/po is the buoyancy
(g being the gravitational acceleration, p the den-
sity, and po a reference density); p = P/po + gz is
the pressure divided by the reference density plus
the geopotential per unit mass; Ag and Ay are the
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1For simplicity, we restrict our discussion to the case of a
rectangular ocean basin, defined by 0 <z < L, 0 <y < D,
and —H <2 <0.

horizontal and vertical turbulent eddy viscosities re-
spectively. Q represents diabatic effects. In practice,
the form @ = KgAb+ Kyb,, is often assumed, with
Ky and Ky horizontal and vertical turbulent diffu-
sivities respectively.

In the past decades, much progress in the theoret-
ical study of U was achieved by so-called wind-driven
circulation theories (see Hendershott (1986) and ref.
therein). The well-known elliptical problem for ¥:

— A A%¥ 4 BT, = curlr, (6)

with § = df/dy, is amenable to boundary layer
methods. One thus write ¥ = ¥; + ¥,,, with ¥,
an interior part, and ¥, a western boundary layer
part. The classical result for ¥y is:

Uy = l/ curlr dz’. (7)
gL

In contrast, a similar theory linking & to the ex-
ternal wind and buoyancy forcing has yet to be de-
veloped. In view of the considerable theoretical d-
ifficulties involved, much of our current knowledge
of ® comes from sensitivity experiments performed
with coarse resolution General Circulation Models
(GCM). Such experiments show & particularly sen-
sitive to the diapycnal (vertical) diffusivity Ky . For
this reason, there is currently much debate about
oceanic diapycnal mixing, because observations sug-
gest that Ky can vary from very small values in the
open ocean to large ones near coastal boundaries
and bottom topography. Observations thus suggest
to seek for a theory of ® with diabatic effects occur-
ring only within surface and meridional boundary
layers, the interior being adiabatic. This idea was
investigated recently by means of numerical GCM-
s running with a vanishing Ky everywhere except
near boundaries (Marotzke 1997, Samelson 1997).

In this paper, we seek to develop an analytical
model based on the above idea that is sufficiently
simple to be analytically tractable. In section 2,
the consideration of the zonally-averaged equations



of motion reminds the reader that ® is largely con-
trolled by the East-West pressure difference. Section
3 establishes the link between ¥ and & through the
pressure field. In section 4, the issues of thermocline
theories and the determination of the density field
are briefly reviewed. A method to construct a closed
solution satisfying the ideal fluid thermocline theory
in the interior is also proposed. In sections 5 and 6,
the method is applied to the case of the ventilated
thermocline model, for which the meridional over-
turning streamfunction and buoyancy transports are
computed. The latter are shown to be strongly con-
trolled by the wind forcing.
2. ZONALLY-AVERAGED EQUATIONS

A natural starting point for a theoretical study of
® is the zonally-averaged equations (2-5), given by

—f(v) +6p = Andu, + Am(u)yy + Av{u).. (8)
flu) +(p)y = Agdvy + Au(v)yy + Av(v)..  (9)
(p): —(b) =0 (10)

(V)y + (w), =0 (11)

(v)(b)y + (w)(b)> = (Q) = (V'v'), — (P'w'). (12)

where for an arbitrary function G,
(sg = [Q(L,y,z) - Q(O,y,z)]/L, (13)

while a primes denotes departing from zonal average.

However, this system is not closed. The main dif-
ficulty is to parameterize the term dp in (8) in terms
of the resolved quantities. This term is particular-
ly important because scaling shows that below the
surface Ekman layer, at leading order, (v) = dp/f.
Given that from (1), one has

b= —L/Z (v)dz' ~ —?/_zHépdz’, (14)

-H

it follows that the knowledge of dp is actually cen-
tral to the theoretical determination of ®. Thus, un-
like ¥, & critically depends upon the stratification
through the hydrostatic approximation (3).

In the past decade, there have been attempts to
“close” the system (8-12). For instance, Wright and
Stocker (1991) suggested a relationship of the form
dp x (p)y, neglecting in a first approximation the
other unknowns Agdu,, Agdv,, (b'v'), and (b'w').
This closure is supported by three-dimensional nu-
merical integrations, but like any other proposed clo-
sure, it lacks a rigorous theoretical justification.

In theory, it is not clear whether the East-West
pressure difference can be computed without actual-
ly solving the whole three-dimensional structure of

the density field. That horizontal variations are im-
portant can be demonstrated in the case of the sur-
face pressure. Indeed, the following section makes it
clear that its determination is closely linked to that
of the barotropic streamfunction V.

3. THE PRESSURE FIELD

As is well-known, the integration of the hydro-
static approximation (3) over depth from the surface
allows to express the pressure field in terms of the
buoyancy field up to the unknown surface pressure
Ps» i€, p = P+ [1 b(x,y, )d¢. Mathematically, the
determination of p, is closely related to that of U.
To see it, first integrate the momentum equations
(2) over depth, and replace U by its expression in
terms of ¥. The resulting equations are as follows:

fU, +0, =Ag(A¥), + 1, (16)

where © = fEdez = Hp, + f?H fzo b(z,y,¢)d(dz.
To determine py, it suffices to determine ©. This
is done by first integrating (15) over longitude from
the eastern boundary. This yields:

€T
0= fu +/ (7 — An(A®),) dz’ + O(L,y), (17)
L
where O(L,y) is the value of © along the eastern
boundary. The latter is determined by integrating
(16) over latitude, so that

y
O(L,y) = OL.yo)+ [ (ry+ An(A)) dy'. (18)
Yo
These expressions show that ©, like ¥, can be ex-
pressed as the sum of an interior plus a western
boundary layer part. At leading order, the latter
are given by

T

Y
Or~ fUr + / Todz’ + / Tydy' + O(L,yo) (19)

L Yo
@M ~ f‘I’M (20)

The function © is often referred to as the Sver-
drup function, and plays a fundamental role in
thermocline theories. The complete determination
of (p) from (10) requires (ps). The latter is giv-

en by (p,) = H-YO) — & [°, [2(b)(y, Q)dCdz ~
H'f(0) + (HL)™ [ [¥ r,da’de + H-'O(L,y) —
10 2 (0)(y, ¢)d¢dz. This formula establishes the
connection between ® and V.

4. THERMOCLINE THEORIES, WELL-
POSEDNESS AND BOUNDARY CONDI-
TIONS



What controls the east-west difference of the den-
sity field? Obviously, one way to answer this
question is by knowing what controls the three-
dimensional structure of the density field. This issue
has been addressed in the past decades by so-called
thermocline theories. So far, two main mathemat-
ical models have been proposed: 1) The ideal fluid
thermocline (IFT) theory by Welander (1959); and
2) the advective-diffusive thermocline (ADT) theory
by Robinson and Stommel (1959). Both models use
the geostrophic and hydrostatic approximations, as
well as the continuity equation (4). They only d-
iffer in their approximation of the full conservation
equation for the buoyancy (5), the IFT theory using

w.Vb + wb, = 0, (21)

compared with wb, = K,b,, for the ADT theory.
These theories neglect terms that are important near
boundaries, so that they are only valid in the ocean
interior. It follows that boundary conditions must be
specified for the interior solution. So far, however,
this problem has not received a satisfactory solution.
This makes it difficult to know how to extend the
interior solution to the lateral boundaries, so that
dp, and thus @, can be computed.

To shed some light on this issue, let us assume that
the interior density field satisfy the IFT equations.
The latter, as shown by Welander (1971), can be
reduced to the the following nonlinear PDE:

J(M27 Mzz) + EM:cMzzz = 0: (22)

f
where M is such that v = —M,./f, v = M,,/f,
p=M, w=LM,/f?and b= M,,. Owing to this
simplification, boundary conditions for the interior
solution can be imposed on M alone. Among these
boundary conditions, the wind forcing imposes:

%Mz =wg, at z=0 (23)
%Mw -0, at z=-H (24)

My(L7y70) - My(L7y7 _H) = Ty. (25)

Eq. (23) is the classical Ekman pumping condition
for the vertical velocity at the basis of the surface Ek-
man layer. Eq. (24) is simply w = 0 at the bottom.
Eq. (25) comes from (16) considered along the east-
ern boundary, neglecting the viscous term. There is
some consensus to also impose the surface buoyan-
cy, but arguably this is somewhat artificial because
the latter should actually be determined as part of

the solution. Furthermore, this is mathematically
justified only in places where the Ekman pumping
is negative, since otherwise causality principles are
violated. Nevertheless, when this is possible, this
condition further imposes

M., =bs(z,y) at z=0. (26)
By themselves, (23-26) are not sufficient to single out
a function M among all those satisfying Eq. (22).
The difficulty of specifying further boundary condi-
tion for b can be traced back to the difficulty of solv-
ing the boundary layer structure of the full problem
(2-5) with an imposed functional form Q = Q(b)
for the diabatic term in the r.h.s of (5). To obtain
a tractable problem, we investigate the opposite ap-
proach which consists in imposing the functional for-
m of the buoyancy near the boundaries, so that the
diabatic term of the r.h.s. of (5) becomes diagnostic.
More specifically, given one particular function M
satisfying (22) and the boundary conditions (23-26),
we assume that the validity of the interior solution
for b = M, extends to the boundaries as well. This
is equivalent to state, if we decompose the total ve-
locity field into a geostrophic and ageostrophic parts,
i.e., u = ug + uy, that the equation ug.Vb+ wg.b,
is valid everywhere. As a result, the diabatic ter-
m O becomes an entirely diagnostic function of the
buoyancy and ageostrophic velocity as follows:

Q = div(uygbd) + (wab),. (27)

Since the ageostrophic terms are important only
within the boundary layers, the approach has the
desired properties of confining the diabatic effects
to the boundary layers only. Such a model is thus
consistent with the idea that enhanced mixing takes
place near boundaries. Note that by construction
the solution satisfies all the boundary conditions on
the velocity field, so that an arbitrary wind forc-
ing can be imposed. This can not be done, how-
ever, for the buoyancy forcing since diabatic effects
are entirely diagnostic through (27). It follows that
the meridional mass and buoyancy transports in this
model are entirely constrained by the specification of
the wind forcing and the density surface. This is in
this sense that the title should be understood.

5. A CLOSED LPS SOLUTION

An idealized example illustrating the preceding
ideas can be constructed within the framework of
the ventilated thermocline model of Luyten et al.
(1983). This model is based on the IFT model, but
with the continuous stratification replaced by a s-
tackered set of a few homogeneous density layers



overlying a resting abyss. The geometry and par-
ticular notations are depicted in Fig. 1.
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Figure 1: Geometry and notations for LPS model

A particular solution of the LPS model is as fol-

lows: /
_ (206.9\"”

where G3(6) is a function that depends uniquely up-
on latitude. Its expression in the regions R3(f2 <
0 <On), R2(61 <0 <02), and R3(0s <0 < 0y) is

(R3)7
(R2)7

(28)

73,
v3 +72(1 = f/f2)?%
Y3 +v2(1 = f/ f2)*+
(1= f/H)* (1= f/f3)?,

where the parameter f5 (f3 > f2) is defined by:

Gs = (29)

(Rl)a

3 1
= (R ) =
The layer thicknesses Hy and H, are expressed as
a function of H3 by Hz(4,60) = (1 — f/f2)Hs(¢,0)
and Hy(¢,0) = (1 — f/f1)(1 — f/f3)Hs. These ex-
pressions represent a, concise version of those derived
by LPS. For simplicity, the above functional rela-
tionships are assumed to hold near the western and
eastern boundaries, in places of the homogeneous

potential vorticity pool and shadow zone discussed
by LPS.

6. MERIDIONAL TRANSPORT OF MASS
AND BUOYANCY

(30)

Depth (m)

The meridional overturning streamfunction @ is
determined by using (14), the pressure in each layer
being given by

=y Hy +voHs +v3Hs + (1 + 72 + 73 — 9)2

p2 = voHy +v3Hs + (2 + 73 — 9)2

= v3H3 + (73 — 9)%

where 7v; = g(pi+1 — pi)/po is the reduced gravity
associated with the layer i. One verifies that these
expressions are continuous across the layer interfaces
at z = —Hy, 2z = —Hjy and z = —Hj3. Accordingly,
the east-west pressure difference is either a constant
or a linear function of depth, so that ® varies either
linearly or quadratically with depth. An example of
what can be obtained is depicted in Fig. 2.
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Figure 2: An example of meridional overturning
streamfunction in a LPS type model. Superimposed
are the isolines for the stratification at the eastern
and western boundaries.

In order to compute the diagnostic meridional
buoyancy transport from the formula (27), we make



the assumption that Q can be expressed as the ver-
tical divergence of a vertical buoyancy flux, i.e.,
Q = 0,F,;. As a result, the meridional buoyancy
transport must schematically behave as depicted in
Fig. 3. Physically, the mass conversion taking place
within the Ekman layer must be locally balanced by
an incoming surface buoyancy flux. This behavior is
consistent with the formula for the meridional heat
transport derived by Klinger and Marotzke (2000)
for the meridional subtropical gyre in a continuous-
ly stratified ocean:

dr’

Ts(y) (T")
H(y) = pC L/ L
(y) = pCyp . of

where ()}, is the heat capacity, and Ts the surface
temperature, with the isotherm T' = T outcropping
at the latitude of zero wind stress.

Mevidional
trangport of dengity

(P32 Ve,

o I .

N @y - (19(03P2) Ve,

- [09005700)* (0ypr] e

Figure 3: Schematic buoyancy transport associated
with the meridional overturning streamfunction of
Fig. 2. In this example, the zonal component of
the wind stress vanishes at the latitudes 10°N and
30°N. s is a parameter lower than unity depend-
ing on the stratification only, while Vg denotes the
Ekman transport.

7. DISCUSSION

An analytically tractable model for the meridon-
al overturning streamfunction and meridional buoy-
ancy transport based on the ventilated thermocline
theory has been constructed. By construction, dia-
batic effects are confined solely to the surface and
meridional boundaries. This model is thus con-
sistent with an ocean with enhanced mixing near

boundaries, as observations suggest. However, be-
cause of the idealization of a resting abyss, the mod-
el can only model the upper wind-driven overturning
cells. As a result, ® must be of the form

(72)
!

where G(y, z) is a function of the stratification on-
ly. Despite its idealization, this model predicts a
meridional buoyancy transport consistent with that
obtained in the subtropical gyre by Klinger and
Marotzke (2000) in a coarse resolution GCM. Fur-
ther work is obviously needed to address the more
general case.

O(y,2) = G(y, 2)
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