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1 INTRODUCTION

Vertically pointing Doppler-radars are so far the only in-
struments which can provide detailed information about
the vertical profile of the velocity distribution of hydro-
meteors. For water drops a well defined terminal-velocity-
size-relation exists and, therefore, the vertical profile of
the drop size distribution is in principle accessible from
the vertical profile of the velocity distribution.

Well known and often treated problems in this field
are turbulent vertical air motions (e.g., Wakasugi et al.,
1986), deviation of drops from a spherical shape, intro-
duction of variance into the Doppler spectrum through
the divergence of the radar beam in the presence of hor-
izontal wind and wind shear (e.g., Sauvageot, 1992) and
other ”meteorological” sources of error.

In the past different vertically pointing radar set-
ups have been applied to measure vertical profiles of
Doppler velocity. Besides the widely used pulsed instru-
ments an FM-CW–method invented by Strauch (1976) is
frequently used. Here a frequency modulated microwave
signal is transmitted continuously and is mixed with the
backscattered signal. It can be shown that information
about the range, the fallspeed and the number density
of the scatterers are approximately accessible through
calculation of the power spectrum of that mixed signal.
This paper deals with the question of how accurate the
drop size distribution can in principle be measured by an
(ideal) FM-CW Doppler radar, disregarding the ”meteo-
rological” sources of error.

It turns out that a careful derivation of the theoreti-
cal power spectrum for a single scatterer differs from that
originally given by Strauch (1976) in the sense that an
additional term appears whose consideration leads to a
large overestimation of the number of small raindrops in
heavy rain (lots of scatterers with differing sizes and ra-
dial velocities). This finding is supported by Monte Carlo
simulations of the FM-CW–measurement of drops hav-
ing a predefined size spectrum which are randomly dis-
tributed in and falling through the radar volume.

These model simulations can generally be used to
investigate other properties of the FM-CW technique,
e.g. spectral leakage and echo statistics.

2 THE FM-CW–DOPPLER RADAR

Fig. 1 gives a sketch of the FM-CW method as pro-
posed by Strauch (1976) to infer the radial velocity dis-
tribution profile of distributed scatterers. Essentially, the
backscattered signal of distributed targets is instanta-
neously mixed with the transmitted signal, i.e., a signal
with the difference phase is produced. The phase is the
time integral over frequency f and contains information
about the range and radial velocity of the scatteres be-
cause of the frequency shift between the transmitted and
the received signal.

Often a linear frequency modulation pattern (”saw-
tooth”) is applied because it greatly simplifies things, but
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Fig. 1: Sketch of the FM-CW method with Doppler processing:
1) frequency generator, 2) transmitting antenna, 3) receiving
antenna, 4) mixer, 5) Fourier transformation, 6) power spec-
trum and 7) drop size distribution.

in general other patterns can be used. In this paper, we
take into account a linear downsweep mode (sweep =
one sawtooth); fig. 2 shows the corresponding frequency
time series of the continuously transmitted wave along
with the received signals of a nonmoving and a moving
target, both at the same range. T is the time for one
sweep, f0 the basic radar frequency.

Fig. 2: Sketch of the frequency of the transmitted (solid
line) and received signal (dotted line: nonmoving target; dash-
dotted line: moving target) as function of time for an FM-CW–
Doppler Radar in downsweep mode.

Consider a single scatterer moving towards the radar:
When the backscattered signal arrives at the mixer, its
frequency is higher than the transmitted signal at that
moment because of both wave travelling time and the
Doppler effect. Information about this difference is con-
tained in the difference phase at the mixer output. A
priori the two sources of difference are not distinguish-
able. Strauch (1976) showed that in the power spectrum
of the mixed signal, taken over K (� 1) consecutive
sweeps (not only one), the two components separate.

However, in the theoretical derivation of the power
spectrum he neglected a ”small” term which does not
seem to be of importance in the presence of a single
scatterer but can cause considerable errors when lots of
scatterers with differing sizes and velocities are present
(Blahak, 2000).

3 THEORETICAL POWER SPECTRUM
OF A SINGLE DROP

In view of a proper interpretation of FM-CW–Doppler
power spectra of distributed rain drops it is convenient to
first look at the contribution of a single drop. A detailed
derivation of the theoretical power spectrum of such a
single moving target can be found in Blahak (2000).
Here just a few words: If the drop does not move relative
to the radar, the power spectrum P consists of sharp
lines at frequencies of multiples of 1/T . If its range r
equals n × c/2B = n∆r, n ∈ N, c = speed of light



and B = sawtooth amplitude, then exactly one line ap-
pears at f = n/T (see also fig. 3, left graph), otherwise
also weaker lines appear at the adjacent multiples of 1/T
(spectral leakage). When the drop is moving with radial
velocity vr (positive towards the radar), the entire spec-
trum is shifted by the Doppler frequency fd = 2f0vr/c
in positive direction; then other smaller lines appear at
frequencies mirrored at the consecutive multiples of 1/T ,
when the range is not exactly a multiple of ∆r (spectral
leakage coming from the negative side of the fourier spec-
trum F , which is an even complex function of frequency;
P = 2|F |2, when only f > 0 is considered). These are
neglected in the original literature.

Therefore – when looking at the strongest line – if one
expects only motions towards the radar (as in rain) and if
the maximum Doppler frequency of the drops is smaller
than 1/T , the intervalls between n/T and (n + 1)/T
are associated with a range cell with width ∆r centered
around n∆r. The shift of that line relative to ”its” base
gives the Doppler frequency fd and therefore the velocity.

Fig. 3: Normalized theoretical power spectra of example drops
as a function of frequency (see text for explanation). T is the
duration of one sweep.

Fig. 3 shows graphical representations of that func-
tion for example drops. In the left graph, the normalized
power spectrum of a drop exactly at r = 3∆r is shown
i) when vr = 0 (black) and ii) when vr > 0 (grey). In
the right graph, the drop is at r = 3.5∆r and vr > 0.
The vertical arrows indicate the lines which are neglected
in the original literature, the small horizontal arrows sug-
gest to the ”mirroring”. Note that the maximum power
is only about 0.5 the maximum power of the line in the
left graph.

4 DISTRIBUTED RAIN DROPS

To derive the drop size distribution in a certain range
cell, usually the following formula is applied, provided
the Rayleigh approximation is valid:

N [D(vr)] = C
r2

∆r
D(vr)

−6 p[D(vr)]

dD/dvr
(1)

where D is the drop diameter, C is a proportionality
constant determinded by the radar system, p(D) is the
measured ensemble average power spectrum and r2/∆r
is the range correction valid if r2 � (∆r)2.

Essential assumptions herein are that p is the sum of
the contribution of each single drop as presented in sec. 3
and that weaker contributions of drops at ranges between
multiples of ∆r are compensated by spectral leakage of
drops with same D and vr in adjacent range cells.

Referring to this, a few remarks have to be made: The

received ~E-field is the sum of the backscattered fields of
every single drop. Therefore, the complex fourier spec-
trum of the mixed signal is the sum of each single drop’s
fourier spectrum. But the power spectrum is not nec-
essarily the sum of the power spectra associated with
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Fig. 4: Sketch of the Monte Carlo model. M=16 is the number
of range bins (”1”: 10–30 m; . . . ; ”10”: 190–210 m; . . . ;
”16”: 310–330 m), α is two times the 3-dB–beamwidth.

the single drops. Also the lines indicated by the verti-
cal arrows in fig. 3 may play a role. Finally, echo statis-
tics valid for ordinary pulsed radar systems (Marshall and
Hitschfeld, 1953) have to be checked to be valid for FM-
CW–Doppler systems, too.

5 MONTE CARLO SIMULATIONS OF
FM-CW DROP SIZE DISTRIBUTION
MEASUREMENTS

To check the assumptions outlined in section 4, a simple

Monte Carlo model is used. The backscattered ~E-field as
sum of the contributions of randomly distributed falling
spherical rain drops with an adjustable, spatially homoge-
neous size distribution is modeled (Rayleigh scattering).
This signal is ideally mixed (i.e., without intermodula-
tions) with the transmitted signal, an FFT is performed
over K = 64 sweeps and the power spectrum is calcu-
lated. Then 200 consecutive power spectra are averaged
incoherently to obtain the mean power spectrum p. The
drop size distribution is calculated with (1), in which the
constant C was calibrated in a way that the rain rate R
in the second range bin equals the ”true” rain rate.

Fig. 4 shows the main characteristics of the model.
Radar parameters are chosen in a way that the maximum
unambiguous velocity vmax is 12 m s−1. Note that the
following results do not depend on the wavelength of the
radar, as long as Rayleigh scattering can be assumed.
Also the results can be generalized to arbitrary settings
of the range resolution ∆r.

First, an exponential distribution N(D) =
N0 exp(−λD) with N0 = 8000 m−3mm−1 and
λ = 2.5 mm−1 (R ≈ 10 mm h−1) was chosen. To keep
the computational amount within a manageable limit,
no drops smaller than 0.7 mm have been modeled. In
the interpretation, only drops with D < 4.5 mm have
been considered because the radar volume contains a
very small amount of larger drops, leading to statistical

Fig. 5: Left: Modeled FM-CW drop size spectra and predefined
”true” exponential spectrum. Right: Ratio of the FM-CW drop
size spectra and the exponential continuation of the ”true”
spectrum, Nec(D). No window functions applied.



Fig. 6: Same as fig. 5, but with an additional secondary mode
in the ”true” spectrum. No window functions applied.

inhomogeneities in their spatial distribution which do
not lead to useful results.

Fig. 5 shows the results for the 2nd, 4th and 6th
height bin. Here no window functions have been applied
to the mixed signal before the FFT. At D > 1.2 mm
the agreement is good. But below, drop concentra-
tions are systematically overestimated. The small peak at
D=0.7 mm can be adressed to the lines marked by the
vertical arrows in fig. 3: Large drops with vr ≈ 9 m s−1

produce significant contributions to p at frequencies cor-
responding to vr = vmax - 9 m s−1 = 3 m s−1 (⇔ D ≈
0.7 m s−1) when present in a sufficient number, since the
contributions of the drops are proportional to D6. The
erroneously large amount of drops with D < 0.7 mm can
be addressed to the fact that between the visible lines in
fig. 3 there are very weak maxima (”noise”), which, for
the drop collective, lead to a nonzero power spectrum in
that size range.

Fig. 7: Same as fig. 5, but with window functions applied.

Same effects can be seen in fig. 6. Additionally, here
a secondary mode at D ≈ 2 mm was predescribed
to check the measurement of such modes. In the FM-
CW–measurement, the mode appears slightly shifted and
smeared, but qualitatively could be resolved very well.

The drop size distribution shown in fig. 7 is the same
exponential as in fig. 5. The difference is that, before the
FFT of the mixed signal, a combined window function
(frequently used in FM-CW–radars) has been multiplied
to the mixed signal: a square-cosine window for each sin-
gle sweep and a hamming window over the K = 64
sweeps used for one FFT. This leads to a nearly com-
plete elimination of the small-size-range overestimation,
because spectral leakage and ”noise” are weakened.

Fig. 8 shows the measurement of the spectrum of
fig. 6 but with the same window function applied as in
fig. 7. Again, the mode is slightly shifted and smeared,

Fig. 8: Same as fig. 6, but with window functions applied.

but the spectrum could be resolved very well even in the
small size range.

Note a decent underestimation of the drop number
concentration in the size range of D > 1.5 mm above the
level of calibration (height bin 2) which seems to increase
with height, when the window function is applied (fig. 7,
fig. 8). This could be due to the fact that the assumption
for the range correction term in (1), r2 � (∆r)2, was
not sufficiently satisfied for height bin 2, or, most likely,
could be an artifact of spectral leakage in combination
with the range-decreasing received powers.

6 SUMMARY AND CONCLUSIONS

Simple Monte Carlo simulations of the backscattered ~E-
Field of randomly distributed, falling rain drops have been
used to study the effects of spectral leakage and the small
lines (marked by vertical arrows in fig. 3) when measuring
a drop collective with an FM-CW Doppler radar (Rayleigh
scattering assumed). These small lines have been neg-
lected in the original literature (Strauch, 1976). In the
simulations, all other sources of error (turbulence, echos
from side lobes, intermodulation by the mixer, etc.) have
been disregarded. Note that turbulence could be easily
included via the probability function of turbulence (PFT)
since every single drop can be assigned a distinct vr. The
”calibration” of the constant C in (1) was done in a way
that the rain rate R in the second height bin equaled the
rain rate given by the predefinded drop spectrum.

It has been shown that the number of small drops may
be considerably overestimated by an FM-CW Doppler
radar in heavy rain. But this problem could be minimized
through the use of specific window functions (section 5).
A predescribed secondary mode at D ≈ 2 mm could be
resolved reasonably well. Echo statistics as described in
Marshall and Hitschfeld (1953) are also applicable to FM-
CW–power spectra, which is not presented in this paper
but has been derived from the simulations. These results
do not depend on a specific radar frequency or a specific
range resolution.

The effect of the increasing underestimation of drop
concentrations with height has to be checked by further
simulations.
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