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1. INTRODUCTION

Atmospheric flow theory relies to a large extent
on scale analyses and perturbation methods. By ex-
ploring the smallness of, e.g., the Froude, Mach, and
Rossby numbers (Fr,M,Ro), and of various length
and time scale ratios these analyses yield simpli-
fied asymptotic equations describing the dynamics on
specific flow scales. Two observations concerning the
use of such simplified equations in numerical simula-
tion codes motivate the present work:

• These simplifications generally arise because of
singular degeneracies of the governing equations
as the non-dimensional parameters vanish.

• Simplifications that may be well justified for
large scale flow simulations cannot be main-
tained when numerical grid resolutions are in-
creased, and smaller scale phenomena are to be
described.
A prominent motivation for adopting simplified

equation systems are the expected gains in compu-
tational efficiency, which result from reductions in
the numbers of dependent variables and equations.
However, the very (singular) behavior that makes
these simplifications possible in the first place can
also lead to severe difficulties in solving the under-
lying more complete original equations: Numeri-
cal truncation errors from the discretization of dom-
inant, nearly balanced terms become comparable
with the next order terms that make up the “inter-
esting”dynamics. Prominent examples are spurious
winds over steep topography, and unphysical sound
wave generation in simulations based on fully com-
pressible dynamics.

With continously increasing available computa-
tional capacities higher and higher grid resolutions
are becoming affordable. As a consequence, a single
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computation today already bridges two to three or-
ders of magnitude of resolved horizontal scales. A
typical computational run simultaneously includes
large scale synoptic dynamics, essentially following
quasi-geostrophic theory, medium scale wave phe-
nomena that can be well captured by the hydrostatic
primitive equations, and meso-scale non-hydrostatic
fluctuations. The resulting trend in meteorological
modelling is to move away from simplified model
equations that can describe only a limited range
of scales and to adopt more comprehensive sets of
equations. The current production code, LM, of the
Deutscher Wetterdienst (German Weather Forecast
Service) in fact uses the full three-dimensional com-
pressible flow equations, Doms and Schättler (1999).

The present paper describes a strategy to address
the following two issues associated with this trend:

• The scale-related singular dominant balances,
such as quasi-geostrophy, near-hydrostatics, and
near-anelasticity, are not automatically well rep-
resented in numerical solutions of equation sets
that do not presume them explicitly.

• The prevailing near-singular solution behavior
can severely affect numerical accuracy and ef-
ficiency.

These issues arise from undesired interactions of
numerical truncation errors with the singular bal-
ances that characterize atmospheric flows. Our ap-
proach to addressing them proceeds as follows:

1. We consider the full three-dimensional com-
pressible flow equations in the same form we use
for numerical discretization, e.g., in conserva-
tion form, in primitive variables, or in a vorticity-
based form.

2. Exploiting the smallness of the Rossby, Froude,
and Mach numbers we introduce a general mul-
tiple scales asymptotic ansatz that captures the
most relevant atmospheric scale ratios and limit
regimes.



3. The asymptotic analysis reveals the mathematical
structure of the scale-related dominant balances.

4. The results are used as guidelines in the construc-
tion of numerical discretizations that avoid the
pollution of physical effects by singular amplifi-
cation of truncation errors.

The rest of this paper is organized as follows. Sec-
tion 2. summarizes the generalized multiple scales
asymptotic ansatz, section 3. justifies this approach
by showing that it allows us to recover many, if
not most, of the well-established simplified model
equations for atmospheric flow dynamics, section
4. discusses the problem of hydrostatic balances in
compressible flow simulations, summarizes the con-
struction of an asymptotics-motivated “well-balanced
scheme”, and provides first successful results.

2. SCALINGS, DISTINGUISHED LIMITS, AND
MULTIPLE SCALES

A quite convincing agreement regarding sev-
eral characteristic orders of magnitude in atmo-
spheric flows, (Gill (1982),Pedlosky:86 (1987),Zey-
tounian (1991)). Typical atmospheric flow veloci-
ties are |v| ∼ uref = 10 m/s, the atmospheric scale
height is hsc ∼ �ref = 10 km, the atmospheric pres-
sures and density are ρ ∼ ρref = 1.0 kg/m3 and
p ∼ pref = 105 kg m/s2, a characteristic Brunt-Väisälä
frequency is N ∼ Nref = 10−2 s−1, and the gravita-
tional acceleration and earth rotation frequency are
g ∼ 10 m/s2 and Ω ∼ 10−4 s−1. Based on these es-
timates, the characteristic Mach, Froude, and Rossby
numbers are

M =
uref√

pref/ρref

≈ 1/33

Fr =
uref√
g�ref

≈ 1/33

Frstab. =
uref

�refN
≈ 1/7

Ro =
uref

2Ω�ref

≈ 5

(1)

With these definitions the dimensionless govering
equations for three-dimensional, inviscid, dry atmo-

spheric flows read

ρt + ∇ · (ρv) = 0

vt + v · ∇v + Ω×v
Ro

+ ∇p
M2ρ

= − k
Fr2

pt + v · ∇p + γp∇ · v = 0

(2)

where ρ,v, p are the density, (three-dimensional) flow
velocity, and pressure, respectively, Ω,k are unit vec-
tors pointing in the direction of the earth rotation axis
and in the vertical direction,respectively, and γ is the
(constant) isentropic exponent of the considered ideal
gas.

These equations will suffice as a basis for the
subsequent discussions. Notice that parameteriza-
tions of subgrid scale effects can be handled straight-
forwardly, provided they are non-singular in the limit
regimes considered below.

Various familiar simplifying approximations of
theoretical meteorology can be justified as asymp-
totic limits where one of the above non-dimensional
parameters vanishes. Thus the limit M → 0 yields the
anelastic approximation, Fr → 0 induces hydrostatic
balance, Frstab. → 0 implies strongly stratified flow
with restricted vertical motions, and Ro·�ref/Lref → 0
implies (quasi-) geostrophy, when Lref is a typical
horizontal synoptic scale.

We obtain a unified mathematical representation
of these various limits and a systematic approach to
studying multi-scale interactions by introducing the
following distinguished limits:

Frstab. ∼
√

Fr ∼
√

M ∼ 1

Ro
∼ ε 
 1 (3)

This ansatz, which reduces the number of degrees of
freedom in the set of non-dimensional parameters to
only one, is pragmatically justified by the concrete
numbers given in (1).

Let U(x, z, t; ε) = (ρ,u, w, p)(x, z, t; ε) denote so-
lutions of (2). Here u, w and x, z denote the hori-
zontal and vertical flow velocities and co-ordinates,
respectively. Then our generalized asymptotic ansatz
reads

U = Σ
i

εiU(i) (4)



where all expansion functions U(i) have multiple-
scales representations

U(i)(
t

ε
, t, εt, ε2t,

x

ε
, x, εx, ε2x,

z

ε
, z) (5)

Clearly, a comprehensive analysis of solutions for this
very general ansatz is too involved to be presented
here, and—most likely—it would also be too com-
plex to be useful. However, there are three different
lines of research, based on simplified versions of (5),
which are worthy of being explored:

• Judicious specializations of (5), which include
only one rescaled representative each for t, x,
and z, allow us to recover various classical results
of theoretical meteorology. Thus (3)–(5) provides
a unified mathematical framework for meteoro-
logical scaling analysis.

• By construction, the ansatz in (5) is a natural ba-
sis for the analysis of scale interactions, provided
that more than one rescaled representative for
t, x, and z is accounted for.

• By revealing the mathematical structure of the
various scaling regimes in atmospheric flows, a
multiple-scales analysis also provides valuable
hints regarding the construction of uniformly ac-
curate and efficient numerical techniques for
solving the full three-dimensional compressible
flow equations.

In the rest of this paper we concentrate on the first
and last items of this list.

3. RECOVERING CLASSICAL RESULTS

3.1 Stratified and nearly-neutral meso-scale flows

Klein (2000) considers a specialization of (5) for
meso-scale flows, with horizontal scales comparable
with the pressure scale height. In the present termi-
nology, this amounts to

U(i) = U(i)(t,x, z) . (6)

Specifically, t measures variations on the 20 min time
scale, and x, z are both non-dimensionalized by the
reference length of hsc ∼ 10 km. We will not repeat
the detailed derivations from the original reference
here, but rather quote the key results.

Consistent with the derivations in Ogura and
Phillips (1962) and Zeytounian (1991), two quite dif-
ferent regimes of vertical stratification must be distin-
guished. If the (dry) atmospheric stratification is con-
sistent with the above estimate of the Brunt-Väisälä
frequency of 0.01 s−1 or, equivalently, with Frstab ∼√

Fr, then the potential temperature θ = p1/γ/ρ has
an expansion

θ = θ∞ + ε2θ(2)(t,x, z) + o(ε2) (7)

with θ∞ ≡ const. and ∂θ(2)/∂z > 0. In this regime,
the governing equations from (2) reduce to decoupled
flow in horizontal layers (unless parameterizations of
vertical turbulent fluxes are accounted for). To lead-
ing order, the atmosphere is hydrostatically balanced
as regards the pressure and temperature distributions,

p(0)(z) =
(
1 − γ−1

γ
z
) γ

γ−1 ,

ρ(0)(z) = p(0)(z)
1
γ .

(8)

and the flow field is determined by decoupled incom-
pressible flow equations for layers z = const.

ut + u · ∇|| u + ∇|| π
(2) = 0

∇|| · u = 0

w(0) = 0

(9)

Here ∇|| = (∂x, ∂y, 0) denotes the horizontal gradient
components, and π(2) ≡ p(2)/ρ0(z).

Remark: The inclusion of (parameterized) small scale
heat sources induces vertical motions of mass el-
ements towards new layers of neutral stratification.
In this case the vertical velocity is non-zero and
given through an algebraic relation involving the heat
source strength and the potential temperature strati-
fication. See Botta, Klein, and Almgren (1999) and
Klein (2000) for further details.

Remark: The effect of a large scale, horizontally ho-
mogeneous heat loss, e.g., due to radiative cooling, is
expected to yield a quite different relation for vertical
motions. This regime is currently being analyzed.



3.2 Quasi-geostrophic flows

Here we consider a specialization of (5) that in-
volves large horizontal scales and associated much
longer advective time scales. The Ansatz reads

U(i) = U(i)(ε2t, ε2x, z) . (10)

We let (τ, ξ) = (ε2t, ε2x), ξ = (ξ, η, 0), and ∇ξ =
(∂ξ, ∂η, 0) and from the expansion obtain automati-
cally the β–plane approximation

Ω = Ω0(1 + βη) . (11)

The leading order pressure and density are given by
homentropic hydrostatics as in (8). The potential tem-
perature obeys an expansion

θ = 1+ε2Θ(2)(z)+ε3θ(3)(ξ, z, τ)+. . . , (12)

and the higher order pressure and potential tempera-
ture perturbations are related via p(1) ≡ 0 and

∂π(i)

∂z
= −θ(i) (i = 2, 3), (13)

where π(i) = π(i)/ρ(0). Vertical velocities are consis-
tently small, w(i) ≡ 0 for (i = 0, 1, 2), and third order
entropy perturbations are advected according to

θ(3)
τ + u(0) · ∇θ(3) + w(3) dΘ(2)

dz
= 0 . (14)

The horizontal velocity u(0) is computed through the
vertical vorticity component ζ(0) = ∇ξ × u(0), which
obeys the pressure-vorticity relation

ζ(0) + ∇2π(3) = 0 . (15)

Taking the curl of the horizontal momentum equation
one obtains the vorticity evolution equation

ζ(0)
τ +u(0) ·∇ξζ(0) +βv(0) = −∇ξ · u(1) (16)

Noticing further that v(0) = (∂τ +u(0) ·∇) η, that mass
conservation implies

∇ · u(1) = − 1

ρ(0)

∂

∂z
(ρ(0)w(3)) , (17)

and eliminating w(3) using (14) one finds

(∂τ + u(0) · ∇) q = 0 (18)

where q is the potential vorticity, given by

q = ζ(0) + βη +
1

ρ(0)

∂

∂z

(
ρ(0)

dΘ/dz
θ(3)

)
. (19)

Thus we have shown that the specialization (10) of
the general multiple scales ansatz in (5) reproduces
the classical quasi-geostrophic theory.

3.3 Further results

The authors have studied a further specializations
of (5) and found the following correspondences:

U (i)(t,x, z) Anelastic/pseudo-incompr. flow

U (i)(t, εx, z) Large scale internal gravity waves

U (i)(ε2t, ε2x, z) Quasi-Geostrophic Theory

We expect the following relationships to hold as well:

U (i)( t
ε ,x, z

ε ) Small scale internal gravity waves

U (i)(εt, ε2x, z) Rossby adjustment

U (i)(εt, ξ(ε2x)
ε , z) Semi-geostrophic flows

4. A WELL-BALANCED SCHEME FOR NEARLY
HYDROSTATIC FLOWS

As mentioned earlier, numerical weather pre-
diction and climate modelling are adopting more
comprehensive equation sets that are valid over in-
creased scale ranges. Motivated by our co-operation
with the Deutscher Wetterdienst we are developing
asymptotics-based numerical techniques for the full
three-dimensional compressible flow equations in at-
mospheric flow regimes. Key requirements are con-
servation of mass, momentum, and energy, accept-
able accuracy even for relatively coarse grids, and
computational efficiency. Here we sketch our very
first successful developments and results.

We adopt a Godunov-type conservative com-
pressible flow solver which, by construction, con-
serves mass, momentum, and total energy up to ma-
chine roundoff errors, LeVeque (1990). For low Mach



numbers the pressure gradient and the gravitational
acceleration dominate the momentum balance.

In most numerical scheme the gravitation term is
discretized as a volume force while the pressure gra-
dient appears through flux- or finite differences. As
a consequence there is no mechanism that guaran-
tees a balance of these terms also on a discrete level.
In fact, attempts to reproduce the hydrostatic state of
an atmosphere at rest in the vicinity of a high moun-
tain leads to spurious vertical motions that can easily
reach velocities of 50 cm/s and more, unless special
care is taken to account for near-hydrostasy.
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Fig. 1: Development of spurious winds near a
3000 m mountain

Figure 1 shows the maximum vertical velocities vs.
the iteration cycle in two sample computations for
such a simulation. Of the 32 vertical grid levels about
8 cover the lower 3000 m, and of 128 lateral grid
points the mountain is resolve by about 40. The two
computations differ in the discretization of the grav-
itational source term and the vertical pressure gra-
dients. While both schemes exhibit second order
convergence with grid refinement, their actual perfor-
mance for realistic resolutions differs by two orders of
magnitude.

The conference contribution will explain the
asymptotics-motivated construction of the well-
balanced scheme, which was also used to simulate
the lee-wave generation over topography as depicted
qualitatively in Figure 2.

Fig. 2: Lee-wave generation over topography
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Ogura, Y., & Phillips, N. A. (1962). Scale analysis of deep
moist convection and some related numerical calcu-
lations. Journal of Atmosphere Science, 19, 173-179.

Zeytounian, R. K. (1991). Meteorological fluid dynamics.
Heidelberg, Berlin, New York: Springer.


