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1. INTRODUCTION 
 

 Potential vorticity dynamics and thermal convection 

are two areas where low-order models (LOMs) have 

traditionally been an effective research tool (Saltzman 

1959, 1962, Lorenz 1963a, 1963b, 1982, Charney and 

DeVore 1979, Treve and Manley 1982, Legras and Ghil 

1985, Howard and Krishnamurti 1986, De Swart 1988, 

Thiffeault and Horton 1996).  LOMs are commonly 

obtained by the Galerkin method: fluid dynamical fields 

are expanded in series of time-independent orthogonal 

functions satisfying the boundary conditions, then the 

series are truncated, and a finite system of ODEs for the 

coefficients in these expansions (the LOM) is derived 

from the original fluid dynamical equations by using the 

orthogonality properties.  The method, unfortunately, 

does not provide criteria for selecting modes, so that 

truncations are arbitrary, which often results in LOMs 

that violate fundamental conservation properties of the 

original equations and exhibit unphysical behavior.  

Instead of ad hoc truncations, we follow a systematic, 

modular procedure that results in physically sound 

LOMs (Gluhovsky 1982, Gluhovsky and Agee 1997, 

Gluhovsky and Tong, 1999).  

 We construct LOMs in the form of coupled 3-mode 

systems known in mechanics as Volterra gyrostats.  The 

Volterra (1899) gyrostat,  
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where , , , , ,p q r a b c  are constants, also describes 

certain fluid dynamical situations (Gluhovsky, 1982; 

Gluhovsky and Tong, 1999),  and the simplest gyrostat 

in a forced regime,  
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becomes, after a linear change of variables (Gluhovsky 

1982), the celebrated Lorenz (1963) model for 2D 

Rayleigh–Bénard convection. 

 In LOMs having the form of coupled gyrostats, 

linear gyrostatic terms (linear terms in Eqs. (1)) occur 

due to various factors peculiar to geophysical fluid 

dynamics, such as stratification, rotation, and 

topography.  When such models are expanded by 

increasing the order of approximation or by adding new 

physical mechanisms, they still have the structure of 

coupled gyrostats.  This structure ensures energy 

conservation (throughout the paper “conservation” 

means “conservation in the absence of forcing and 

dissipation”).  This property of fundamental importance 

is sometimes missing in LOMs (a vivid example is the 

well-known Howard � Krishnamurti (1986) model of 

convection with shear).   In addition, the gyrostatic form 

permits optimal modes selection.   

 Our approach is illustrated below with three 

important LOMs.  One is an extension of the Charney �  

DeVore (1979) model of a barotropic atmosphere over 

topography.  The other is the modification of the Howard 

� Krishnamurti (1986) model that restores conservation 

of energy and of total vorticity to the original model thus 

permitting a coupled gyrostats form for it.  In both cases, 

the “minimal” LOM is extracted that possesses 

conservation properties and demonstrates the effect of 

interest: vacillation between high-index and low-index 

regimes and tilting of convection cells, respectively.  

Both LOMs describe two-dimensional flows.  The third 

LOM is a model for 3D Rayleigh-Bénard convection. 

 
 

2. A LOM FOR THE QUASI – GEOSTROPHIC  
POTENTIAL VORTICITY EQUATION  

 

 A LOM was developed by Charney and DeVore 

(1979) that describes the evolution of two zonal flow 

modes and two Rossby waves and contained 6 modes. 

DeSwart (1988) included two more Rossby waves and 

discovered in his 10-mode system chaotic vacillations 

between two distinct regions in the phase space that he 



identified as high-index and low-index regimes.  Earlier, 

Legras and Ghil (1985) demonstrated transitions 

between different regimes in a 25-mode system.  

DeSwart argued in terms of the attractor dimension that 

transitions should exist even in an 8-mode system. 

However, the standard mode selection procedure 

prevented him from choosing the set of 8 modes 

necessary to obtain the desired effect.  By converting 

DeSwart’s system into coupled gyrostats we were able 

to single out an 8-mode subsystem of coupled gyrostats 

(Eqs. (3)) that indeed exhibits the chaotic vacillations 

(Figure 1).  In Eqs. (3) (and elsewhere), vertical bars are 

used to organize the model into a superposition of 
gyrostats; modes 1v  and 4v  correspond to two zonal 

flow modes, while the six other modes represent three 

Rossby waves.  The four gyrostats involving modes 

1 6v , ..., v  correspond to the original Charney and 

DeVore (1979) model.  The model takes into account 

the effects of rotation and topography.  Accordingly, 

linear gyrostatic terms with coefficient a are due to 

rotation; those with coefficient b are due to topography. 
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Figure 1 . Time series of 1v - component of LOM (3) 

demonstrating chaotic vacillations between high-index 
and low-index regimes. 

 
 
 

 
3. THE MODIFIED HOWARD-KRISHNAMURTI (1986) 

MODEL OF CONVECTION WITH SHEAR 
 
 
The dimensionless Boussinesq equations for 2-D 

Rayleigh – Bénard convection are 
 

T
V V

w w w< w� < w< w� <
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where <  is the stream function, T  is the deviation 

from the equilibrium vertical temperature profile, V  is the 

Prandtl number, and Ra is the Rayleigh number.   
 

 

 



 To arrive at the modified Howard � Krishnamurti 

model that possesses appropriate conservation 

properties, the following Galerkin expansions are used: 
 

D D<  � � �

�

( )sin sin ( )sin ( )cos sin2

( )sin3 , (5)

A t x z B t z C t x z

G t z
 

 

T D D � � �

�

( )cos sin ( )sin2 ( )sin sin2

( )sin4 .

D t x z E t z F t x z

H t z
 

Substituting expansions (5) into Eqs. (4) results in a 

LOM that, by a linear change of variables, may be 

transformed into the following system of six coupled 
gyrostats, where variables �1 8x x  correspond to E, D, 

A, C, B, F, H, and G, respectively, in expansions (5).   
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The gyrostats composing model (6) are particular cases 

of system (1).  Gyrostats I & IV are equivalent to system 

(2) (we call it the Lorenz gyrostat), gyrostats II & V are 

equivalent to the Euler gyroscope (a gyrostat without 

linear terms), and gyrostats III & VI are the degenerative 
Euler gyroscopes.  Taken alone (i.e. with   � �

5 8 0x x ), 

the latter are just simple linear oscillators, but coupled 

here with other gyrostats possessing time varying 
modes 5x  and 8x , they are nonlinear subsystems. 

 It may easily be checked that in any system of 

coupled gyrostats the sum of squares of all modes, 

representing an energy quantity (see discussion in 

Gluhovsky and Tong (1999)), is conserved.  Thus, the 

failure to convert a LOM into coupled gyrostats form 

may signal violation of energy conservation.  This is the 

case with the Howard � Krishnamurti (1986) model that 

is based on the terms with coefficients A to F in 

expansions (5), which cannot be converted into coupled 

gyrostats.  Its modification by Thiffeault and Horton 
(1996), who added the ( )sin4H t z  term in Eqs. (5), 

conserves energy and can be converted (Gluhovsky and 

Tong, 1999) into a system of coupled gyrostats.   

 Hermiz et al. (1995) noticed that the Howard � 

Krishnamurti (1986) model also lacks total vorticity 

conservation due to an insufficient number of shearing 

modes, which can be remedied by adding the second 
shearing mode ( )sin3G t z  in expansion (5).  The same 

is true for the Thiffeault and Horton (1996) version of the 

model.  However, as Thiffeault and Horton (1996) 

pointed out, the Hermiz et al. (1995) model still lacks 

energy conservation, which could be corrected by again 
including the ( )sin4H t z  mode in expansion (5).   

 Model (6) incorporates the suggestions of both 

Hermiz et al. (1995) and Thiffeault and Horton (1996), 

thereby ensuring both total energy and total vorticity 

conservation.  The latter implies the existence of a linear 
integral of motion (total vorticity),  � 3I B G , which is 

equivalent to the conservation of �5 8Rx rx  in LOM (6).  

LOM (6) also has tilted roll solutions like the original 

Howard-Krishnamurti (1986) model.   

 As in the case of the LOM discussed in section 2, 

presenting a system in a gyrostatic form permits to 

identify a subsystem still possessing the desired effect 

(tilting in this case).  Such a subsystem has to contain 

enough modes to exhibit the effect of interest, while 

maintaining a coupled gyrostats structure to have 

conservation properties.  With this in view, we reduced 

system (6) to the following subsystem of three gyrostats 
composed of modes    8 6, 1, ..., 5;i ix X i x X : 
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In Eqs. (7), 6 8, 1, ..., 5;i i iJ D J D   , and other 

coefficients are from Eqs. (6).   

 Figure 2 demonstrates that the tilting of convection 

cells is preserved in LOM (7).  Its subsystem composed 
of modes 1 5, ...,X X  (thus equivalent to the first two 

gyrostats in Eqs. (7)) was studied by Aoyagi et al. 

(1997).  Their model, however, does not conserve the 

total vorticity.  In contrast, LOM (7) does conserve total 
vorticity, thanks to the linear integral �5 6Rx rx  (similar 

to the linear integral in LOM (6)).  As a system of 

coupled gyrostats, LOM (7) also conserves energy.  

Thus, LOM (7) is the smallest LOM exhibiting 

spontaneous vertical shear while respecting all 

conservation laws.   
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Figure 2 .  Contour plot of the stream function              
for a steady state solution of LOM (7) showing the 
tilting of convection cells. 

 
 
 
4. A LOW-ORDER MODEL FOR 3D RAYLEIGH-

BÉNARD CONVECTION 
 

 Instead of the stream function formulation employed 

in Section 3 for the 2D case, here we use the following 

nondimensional system based on the equation for the 
vorticity  �uv9 : 

 
T T

Q
§ ·w w w

 �� � �� � � � �¨ ¸
w w w© ¹

2 ˆ ˆ( ( )
t y x
9

9 9 9�v v x y , 

 
T

T N T
w

 � �� � � � � �  
w

2 , 0,zv
t

v v  (8) 

 

All variables in Eqs. (8) are dimensionless forms of v 
(velocity), 9  (vorticity), T  (temperature deviation from 

stable profile), Q  (kinematic viscosity), and N  (thermal 

conductivity).  The following Galerkin expansions were 

used: 
 

  �1( )sin cos ( )sin cos cos2 ,xv x t ax z w t ax ay z  
 

  �1( )sin cos ( )cos sin cos2 ,yv y t ay z w t ax ay z  
 

 
 � �
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zv ax t ax z ay t ay z
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These expansions result in a LOM that, by a linear 

change of variables, was transformed into system (10), 
where variables �1 8x x  correspond to T002 , T101 , 1x , 

T011 , 1y , w , T112 , and T004 , respectively, in 

expansions (9).   

 LOM (10) is a system of six coupled gyrostats: 

three Lorenz gyrostats (I, II, and III), one Euler 

gyroscope (IV), and two degenerative Euler gyroscopes 

(V and VI).  Lorenz gyrostats I and II compose a 5-mode 

LOM that is a 3D analog of the Lorenz (1963) model.  
These two gyrostats describe dynamics in the ( , )x z  

and ( , )y z  planes, respectively.  
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 Das et al. (2000) studied a model based on 
expansion (9) without the T004( )sin4t z  term.  However, 

we found that their LOM, similar to that of Howard and 

Krishnamurti (1986), possessed trajectories going to 

infinity, again because it does not conserve energy.  In 

contrast, our model (10) as a system of coupled 

gyrostats conserves energy and has only bounded 

solutions. 



5. SUMMARY AND CONCLUSIONS  
 

 In this paper, LOMs of atmospheric circulations are 

developed in the form of coupled Volterra gyrostats.  

Restricting LOMs to this form 
 

1) ensures energy conservation, thus preventing 

unphysical behavior often observed in LOMs based 

on ad hoc truncations;  

2) helps to single out the most effective interactions 

and to design LOMs of optimum size;  

3) allows a modular implementation of the Galerkin 

technique using gyrostats as basic building blocks.  
 

These advantages of our approach were demonstrated 
with three important LOMs: the Charney �  DeVore 
(1979) model of a barotropic atmosphere over 
topography,  a modification of the Howard � Krishnamurti 
(1986) model of convection with shear, and a model of 
3D convection. 
 Another area where LOMs proved useful is 
turbulence: the so-called shell models of turbulent 
cascade originated by Obukhov (1971) and Lorenz 
(1972).  Gluhovsky and Tong (1999) presented a coupled 
gyrostats shell model exhibiting Kolmogorov spectral 
behavior in a chaotic regime.  

 As noted by Brown and Chua (1992), “there is a 

pressing need for new nonlinear techniques that employ 

a building block approach whereby simple well-

understood components are used to construct models of 

complex dynamical systems”. We believe that coupled 

gyrostats could play the role of the above building blocks 

in problems of atmospheric dynamics and turbulence.  
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