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1. INTRODUCTION

The existence of growth rates in excess of the
normal mode growth rate is evidence of nonmodal
growth (NG). A great number of studies have
examined NG in the quasi-geostrophic (QG)
framework, however few if any of them have dealt
with the subject in the context of spherical geometry.
In this study, spherical coordinate results are
compared to Cartesian coordinate results from
corresponding linear QG models. We also examine
how NG varies with the length scale of the initial
perturbation using several global parameters.

2. MODEL DESCRIPTION

The model’s governing equation describes the
conservation of quasi-geostrophic potential vorticity
(QGPV); this is solved as an initial value problem.
Diagnostic quantities such as the L2 norm (L2),
kinetic energy (KE), available potential energy
(APE), potential enstrophy (H), and Total Energy
(TE) are calculated from the perturbation quantities
at each time step. These perturbation patterns are
overlaid upon a background state. The model is
linearized about a background state consisting of a
zonal flow, varying in the vertical and meridional,
and a vertical temperature profile, which stays
constant in the horizontal.

The model uses a single governing equation
which expresses the conservation of QGPV. The
governing equation is
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where
q : perturbation QGPV

q : basic state QGPV

ψ : perturbation streamfunction

ψ : basic state streamfunction

µ : sine of latitude

λ : longitude
p : pressure

σ : static stability parameter
_____________________________________
*Corresponding author address: Cris Castello,
Department of L.A.W.R., One Shields Ave., Davis,
CA 95616-8627.
e-mail:ccastello@ucdavis.edu

It should be noted that µ is not a constant and
changes with latitude, and hence this is one major
difference between this model and most Cartesian
QG models

The derivation of the governing equation followed
the steps outlined in Hollingsworth, et. al. (1976).

Eigenvalue and initial value versions of the
model were developed. The model uses a
parallelogrammic truncation scheme, keeping 15
zonal wavenumbers and 30 meridional nodes
(P15/30 truncation). Eight model levels were kept.
The basic state zonal wind used in the model was a
30 degree jet, described in Simmons and Hoskins
(1976) and Frederiksen (1978).

The model was tested against previously
published results from similar models. Despite minor
differences in the handling of the vertical structures
of the models, the normal mode growth rate results
obtained from the QG model described here were in
close agreement with those published by
Frederiksen (1978). The fastest growing normal
modes occurred at zonal wavenumbers 8 and 9,
both of which showed growth rates very near
0.6/day.

3. RESULTS

An examination of time series of growth rates for
L2, KE, APE, H, and TE can illustrate situations
where NG is occurring. We used the model to
investigate NG in these quantities. Two general
types of initial conditions (IC) were used: 1. a
“connected” IC, which has been found to develop
large NG in Cartesian models; and 2. a “separated”
IC, which is similar to observed atmospheric
conditions prior to cyclogenesis. The model was run
for ten days using various variations on the two IC’s
(by varying amount the amount of vertical
tilt).

Our results in spherical coordinates (Fig. 1) are
broadly similar to our prior findings in Cartesian
geometry. The connected IC has much more NG,
especially for very short wavenumbers. In all cases
studied the structure is essentially the most unstable
normal mode within 3 days. Varying the upstream
shift (between upper and lower trough locations)
affects some properties within the first 3 days. For
the connected IC, peak L2 growth rate occurs
quickly (within 6 hours) and is largest in magnitude
for zonal wavenumber >20. For the separated IC,
excess growth does not occur, even for very short
wavelengths. In fact, there is significant negative
growth rate near the start. In Cartesian geometry,
this was attributed to a large initial projection onto
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Fig. 1. Growth rates time series for connected trough IC (left column) and a separated trough IC (right
column). Top row is TE, bottom row L2. Ordinate is zonal wavenumber; abscissa is time in days.

rapidly decaying normal modes. KE growth rates are
precisely twice the L2 growth rates, but peak TE
growth rates are much smaller than for L2. The
reduction is caused by modest APE growth rates
and APE is a larger fraction of TE than is KE at the
start. APE develops its peak growth rates much later
(12-48 hours after the start depending on the case).
Peak growth rates of H occur at zonal wavenumbers
between 10 and 20 and for both connected and
separated IC. Prior work in Cartesian geometry
proved that strong NG occurred in H for the
separated IC due to differences between the
boundary QGPV (BPV) in the initial state versus the
asymptotic normal mode state. Subtle differences in
initial structure made large changes in the amount of
NG in BPV growth rate. Work in Cartesian geometry
showed how the emergence of the more unstable
normal modes could lead to horizontal tilts even

though the basic flow has no horizontal shear. The
tilts could be against or with the shear. Here, we
have a strong jet and the tilts are with the shear.
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