8.6

CONSEQUENCES OF NONLINEARITIES ON THE
LoOw-FREQUENCY BEHAVIOR OF AN AGCM

Judith Berner*
National Center for Atmospheric Research! Boulder, Colorado and

Meteorologisches Institut der Universitdt Bonn, Germany

Grant Branstator
National Center for Atmospheric Research! Boulder, Colorado

1. INTRODUCTION

An exceptionally long Atmospheric General Cir-
culation Model (AGCM) integration is used to esti-
mate the mean evolution of the geopotential heights
® at 500hPa in EQF-phase space. These mean ten-
dencies exhibit nonlinear characteristics as described
in detail in Berner 1999. It is the aim of this paper
to show that although the mean motion describes
only a very small portion of the total motion, it con-
tains essential information about the evolution of the
®500npa- To quantify to what degree the detected
nonlinearities produce different behavior than a lin-
ear system, linear and nonlinear stochastic models
are built using the mean tendency fields derived from
the GCM dataset for the deterministic part. These
models are fitted in low-order phase space. There-
fore the noise component represents the interaction
of the truncated model with other modes, as well as
the residual motion not described by the mean ten-
dencies. The nonlinearities are found to markedly
affect the Probability Density Function (PDF) of
such models even when they are highly truncated.
Indeed, the nonlinearities produce non-Gaussian dis-
tributions very similar to those found in the GCM
generated data. In conclusion, it is remarkable how
well a highly truncated stochastically forced non-
linear model captures the low-order statistics and
dynamics of the GCM.
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2. DATa

The dataset in this study consists of simulated
geopotential heights ® at 500hPa. The AGCM used
was developed at the National Center for Atmo-
spheric Research and is known as CCMOB!. Sixty
runs, each of 5 x 10*d duration, were performed.
To focus on internal variability each of these inte-
grations was forced by the same time-independent
January boundary conditions (perpetual January
mode), but was started from a different initial con-
dition. The dataset consists of 12 hourly sampled
data. To limit the degrees of freedom and yet con-
centrate on high-amplitude circulation features, an
Empirical Orthogonal Function (EOF) analysis was
performed. In this investigation we limit out atten-
tion to projections of the data onto the leading four
EQFs.

3. NONLINEAR SIGNATURES

a. Probability Density Function

The PDF of the ®590npa exhibits modest, but
significant departures from bivariate Gaussianity in
the form of radial “ridges”, though no more than
one maximum is found (Fig. 1a). These ridges be-
come local density maxima in the mutual informa-
tion density (MID) c(x,y) (Fig. 1b), that is obtained
by dividing the 2D PDF f(z,y) by the product of
its marginal distributions f(z) and f(y), taking the
logarithm of this quantity and multiplying it with
f(z,y):

_ s f(z,y)
c(z,y) = f(z,y)log OTOR (1)
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1: a) PDF of the ®599pa unfiltered CCMO data (sample size: 6 x 10%). The data is projected onto the 2D phase

space spanned by EOF1 and EOF4. The data is normalized so that each PC has a standard deviation of one. b) Mutual
information density of the PDF in a) obtained by dividing the 2D PDF by the product of its marginal distributions, taking the
logarithm of this quantity and and multiplying it with the PDF (see text).

The integral over the mutual information density

¢ = [[ sy L2 2)

f(2)f(y)
is a well known quantity in information theory and
referred to as mutual information (Shannon and
Weaver 1949). We will use the mutual information
density as a measure to assess how well the PDF of
various stochastic models captures the density inho-
mogeneities of the GCM’s PDF.

dx dy

b. Mean tendencies

Nonlinear behavior is even more evident in the
mean phase space tendencies (Fig. 2a). Using a least
squares fitting procedure, the mean trajectories can
be decomposed a linear part and a residual part,
which is nonlinear at least within the 2D analysis.
We will hence refer to it as nonlinear motion. In
some subspaces these nonlinear tendencies together
with the trajectories they imply produce distinct sig-
natures of more than one equilibrium point (Fig. 2b).

However, the speed of the nonlinear motion com-
pared to the total motion is very small and does not
exceed 3% at any location in the 2D phase space
(not shown). Although the nonlinear contribution is
small, we will demonstrate that it is not negligible
at all, but contains essential information about the
statistics of the ®5oonpa. This goal is achieved by
building linear and nonlinear stochastic models us-
ing the mean tendency fields derived from the GCM

dataset for the deterministic part and comparing the
behavior of these stochastic models to the GCM’s
behavior. Our criterion for a good stochastic model
will be its ability to match the PDF of the GCM as
closely as possible.

4. THE STOCHASTIC APPROACH

We assume that the system can be modeled by
a Markov Process, that consists of a damped de-
terministic part and is excited by a forcing that is
white in time but might be spatially dependent. The
change of the PDF W (Z, t) with time for such a pro-
cess is given by the Fokker-Planck Eq. (FP-Eq. ):

OW(E,t) D
6t 63:,- (3)
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where Dgl) and Dg-) denote the drift- and diffusion

coefficients. The drift coeflicient Dgl) reflects the de-
terministic part of the Markov Process plus a drift
component that is caused by the noise. The diffu-
sion coefficient Dg) represents the forcing or noise
component. Thus, a spatially dependent forcing will
lead to a Dg), that is a function of phase space loca-
tion. Due to the lack of an analytical description of
the stochastic model, we need to estimate the Dgl)
and D?

;; from the data by using their definition (e. g.
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FIG. 2: a) Mean tendencies and b) nonlinear tendencies in the phase space spanned by EOF1 and EOF4 (sample size:
6 x 108). The nonlinear motion is obtained by removing the damping component of a linear fit from the mean tendencies. The

shading indicates the speed in ﬁ

Risken 1984):

DO(@) = 2 lim L([wi(t +7) — 21])

nl r>o0 T

1
nl r=o 71

where n denotes the sample size and 7 the time lag.
To our knowledge, though described in general terms
by Siegert et al. 1998, the empirical estimation of
these coefficients is a novel approach within the me-
teorological community, partly, because of demand-
ing data requirements. The stationary solution of
the FP-Eq. is found by computing the change of the
distribution function with time given by Eq.4 until
a stationary PDF is reached.

a. Stationary PDF of the FP-Eq.

The drift coefficients are analytically and practi-
cally identical to the mean tendencies in Fig. 2a.
The diffusion tensor in 2D has four elements. The
diagonal elements represent the dominating diffusion
processes, whereas the off-diagonal elements contain
information about the much less important spatial
correlation of the forcing. The estimated diffusion
coefficients are spatially inhomogeneous (e.g. the
first element D;; of the diffusion tensor is shown in
Fig. 3). However, the diffusion coefficients for each
element of the diffusion tensor have the same or-
der of magnitude. The stationary PDF (not shown)
given by the FP-Eq. and its MID (Fig. 4a) show

DO (@)= lim 2 ([ws(t +7) — 2] ) [2;(t +7) — ;1)
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F1G. 3: The first diffusion coefficients Dén) estimated
from the data by using Eq. 4. The contours indicate the values
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remarkably good agreement with the GCM’s PDF.

b. Stationary PDF of the FP-Eq. with spatially
independent forcing

Since the diffusion coefficients are a function of
phase space it is not clear whether the goodness-of-
fit is a result of the spatially dependent forcing or the
nonlinear deterministic drift. To investigate which
component is responsible for the good agreement, we
repeat the calculation above, but replace the forcing
with a spatially independent forcing. This is done by



spatially averaging each diffusion coefficient within
the domain, where the underlying PDF has a value
of at least 0.01. The MID of the stationary PDF of
the FP-Eq. with constant diffusion and full nonlinear
drift (Fig. 4b) still show very good agreement with
the MID of the atmospheric GCM, indicating, that
the goodness-of-fit is the result of the deterministic
part and not of the spatial dependency in the forcing.

c. Stationary PDF of the “linear” FP-FEq.

To confirm this result we now repeat the calcu-
lation with the full spatially dependent forcing, but
replace the drift coefficients with their least square
linear fit (i.e. the difference between the mean ten-
dencies and the nonlinear part shown in Fig. 2). The
stationary PDF (not shown) of the FP-Eq. and its
MID (Fig. 4c) now differs in essential ways from the
distribution of the GCM.

5. CONCLUSION

We conclude that it is the drift and especially
its nonlinear component that cause the remarkable
agreement between the PDF of the stochastic model
and the CCM, and not the spatially dependent and
correlated forcing. The fact that the Fokker-Planck
solution yields such good results, is an indication
that the underlying process can be modeled as a
Markov process. The distribution of geopotential
height states in EOF phase space is remarkably well
captured by a stochastically forced nonlinear model,
but cannot be modeled well by a linear stochastic
model.
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FiG. 4: a) Mutual information density (MID) of the
stationary PDF of the Fokker-Planck-Eq.. b) MID of the PDF
representing the stationary solution of the Fokker-Planck Eq.,
with spatially independent diffusion and full nonlinear drift.
¢) MID of the PDF representing the stationary solution of the
Fokker-Planck Eq. , where the drift coefficients were replaced
by linear tendencies estimated by a least square linear fit. The
diffusion coefficients are the same as in the nonlinear case.



