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ON THE SELF-ORGANISATION OF BAROCLINIC WAVES INTO WAVE PACKETS
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Introduction

One-dimensional nonlinear wave systems in flu-
ids often obey a dispersion relation of the form
w = w(k, A) that has a functional dependence simi-
lar to that shown schematically in Figure 1. Here A
is typically some quadratic measure of wave ampli-
tude a (e.g. A = a?). This is usually because the

waves impart some O(a?) reversible change to the
background flow, and this change to the flow in turn
affects the dispersion properties of the waves.

If, as is typical, the background flow change is sta-
bilising there will be a finite amplitude uniform wave-
train solution (i.e. with w;=0). By assuming the
wave system is only weakly unstable, and can there-
fore be approximated by a Ginzburg-Landau expan-
sion, Newell (1974) showed that this uniform wave-
train is unstable to sideband perturbation if and only
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The growth of an unstable sideband can be thought
of as the breakup of the uniform wavetrain into wave
packets.

It can be further shown that the length scale of
the most unstable sideband is given by
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where o is the width of the band of unstable
wavenumbers in Figure 1, and D = (w,gx /wikk)?. In
nonlinear integrations of the Ginzburg-Landau equa-
tion wave packets are seen to emerge with length
scales proportional to Lp.

In what follows we shall introduce a model of baro-
clinic waves that is entirely linear except for a simple
representation of wave-mean flow interaction. Its be-
haviour can be compared directly with the nonlinear
one-dimensional wave systems described above.

The Model

The model is adapted from the Phillips’ two-layer
model which describes quasi-geostrophic flow in a
channel that is periodic in the z-direction with di-
mension L, and bounded by sidewalls at y = 0, L,.

*Corresponding Author Address: J. G. Esler, Dept.
of Mathematics, University College, London, WC1E 6BT,
England.

Details of the nondimensionalisation are given in Lee
and Held (1993), and we follow the conventions es-
tablished there. The equations we use are

0qi
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Here g; and ¢; are the linearised perturbation po-
tential vorticity (PV) and streamfunction in layer ¢,
and @; and ®; are the background PV and stream-
function. @; and ®; include the S-effect, a uniform
mean flow component, and a mean flow modification
that is proportional to the local amplitude squared

i=1,2.
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of the linear wave streamfunction (¢, ). Similarities
exist between this model and the weakly nonlinear
formulation of Esler (1997).

The form of the mean flow modification is varied
between each experiment, with the different ’struc-
ture functions’ used shown in Figure 2. These show
the changes to ();, and ®;, in each layer as a function
of latitude.

Results

Figure 3 shows snapshots of ¢, after a long time in
the four model experiments with the four different
‘structure functions’ A-D used in each case. Despite
being apparently similar, each experiment generates
very different wave packet behaviour, from a stable
uniform wavetrain in (A) to isolated wave packets in
(D). Estimating approximate values of ¥ for each
structure function gives ¥ = —0.693,0.373,1.823,
and 5.066 (D = 2.384), which is consistent with a
stable uniform wavetrain in (A). The length scales
of the wave packets in (B-D) can be shown to be
approximately proportional to Lp.

Similar considerations can be shown to apply in
more realistic turbulent flows, despite much more
complex wave-mean flow interaction taking place.
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Figure 1:

diffusive, one-dimensional system.
(b) Real frequency w,. The dotted curves illustrate the situation
at marginal stability (3 = [.) and the solid curves the unstable
situation when 8 = B.(1 — ¢2). The large arrows illustrate the di-
rection in which the curves move with increasing wave amplitude,
due to the effects of nonlinearity.

(@)

Schematic

illustrating the complex frequency-
wavenumber relationship for a typical weakly unstable, dispersive-
(a) Imaginary frequency w;.
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Figure 2: (a) Showing the latitudinal structure QF (y) of the PV
change due to the waves in the upper layer, for all four of the
different mean flow responses used in the numerical experiments,
which are labelled A-D. (b) As (a) but for the lower layer Q% (y).
(c) Showing the upper layer zonal mean flow change induced by a
uniform wavetrain, for mean flow responses A-D. (d) Showing the
lower layer zonal mean flow change induced by a uniform wave-
train, for mean flow responses A-D. The units are essentially ar-
bitrary except for the purposes of comparison between the two

layers.
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Figure 3: Contour plots showing snapshots at long times from the linear wave -mean flow interaction numerical experiments, for
the four different, specified mean flow response structures A, B, C and D (see Figure 2). These correspond to estimated Y values
Y = -.693,2.373,1.ff23 and 5.066. Contour intervals are arbitrary (see discussion in text). [ is fixed at 0.455 for each experiment

(e = 0.413).



