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1. INTRODUCTION

The University of Massachusetts
(UMass) and the University of Oklahoma
(OU) have been collaborating to study
severe storms with a pair of mobile radar
systems operating at 10 and 95 GHz. The
radars will be deployed in the US Central
Planes in the spring of 2001 to collect co-
located radar reflectivity profiles in
tornadoes and their parent storms. The data
will be processed with an artificial neural
network algorithm to estimate liquid water
content (LWC) and drop size of precipitation.
This paper describes this algorithm, which
was originally conceived for detecting in-
flight aircraft icing conditions [1].

The problem of extracting cloud
parameters from measured range profiles of
backscattered power is a good example of a
problem without well-defined rules for
estimation. The forward problem is
straightforward: for a given drop-size
distribution, the radar observed reflectivity,
accounting for attenuation, can easily be
calculated using Mie scattering formulas.
Also, cloud and precipitation  properties,
such as LWC, rain rate or mean drop size
can be directly calculated  from the drop-
size distribution. Solving the inverse
problem, that is, calculating cloud
parameters from measured reflectivity
profiles, is difficult, in part due to the non-
linearity of the forward problem. Artificial
neural networks are ideal for solving
problems where the forward problem is well
characterized but the inverse problem is
complex.

2. THE NEURAL NETWORK
ALGORITHM

The multi-frequency radar measurement
concept is illustrated in Figure 1. Neural
networks were trained to estimate LWC,
mean volume diameter (MeVD) and mean Z
diameter (MeZD) from profiles of multi-
frequency radar observed (i.e. including
attenuation) reflectivity factors (Z) at various
frequency combinations (10-95, 10-35-95,
10-35 GHz).

Figure 1. Multi frequency measurement
concept. Radar observed (attenuated)
reflectivity, from five consecutive range
cells, is input to a neural network to
estimate liquid water content (LWC) drop
size parameter in the middle three cells.

The drop size parameters MeVD and MeZD
are defined as the diameter corresponding
to the mean volume (MeVD) and the
diameter corresponding to the mean radar
reflectivity  factor (MeZD):
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where f(D) is the number of  drops per cubic
meter per micrometer drop-diameter. Mean
Z diameter is a size parameter biased
towards larger drop diameters. When the
size distribution is narrow, MeVD and MeZD
are almost equal. MeZD is considerably
larger than MeVD for drop-size distributions
with widely distributed particle sizes.

Control over the neural network algorithm is
exerted in two ways: 1) the topography of
the network and 2) the variety, quantity and
quality of the training data set. The network
must contain a sufficient number of hidden
layer nodes so the quality of the algorithm is
not limited by the size of the network. On the
other hand, excessively large networks
require a large training data set, which slows
training and data processing. It was found
that for the two frequency networks, (10-95
and 10-35 GHz), 15 and 12 nodes in the two
hidden layers were sufficient along with the
10-node input and 9-node output. The three-
frequency, 10-35-95 GHz network was
configured slightly larger, consisting of 15
input (reflectivity from 5 range gates from
three radars) nodes, 20 and 12 node hidden
layers, and a 9-node output layer. For each
network, the nine outputs are LWC, MeVD
and MeZD, corresponding to the middle
three range gates.

The input nodes of the multi-frequency
networks accept measured profiles of
reflectivity at X-band, ZX, as well as
differential reflectivity gradient vectors for
the attenuating wavelengths.  The
differential reflectivity gradient vectors,

KaXZ −∆
 and WXZ −∆

, normalized to the first
element are expressed as follows:

where ZX (1), ZKa(1) and ZW(1) represent
radar observed reflectivities in the first range
gate of the X, Ka, and W-band radars in
dBZe.   The use of (3) and (4) allows
uncalibrated radar data to be used for the
attenuating radar frequencies.  As long as
the X-band data is calibrated, the removal of

the absolute reflectivities KaZ and WZ  has
little effect.  The advantage of removing the
absolute reflectivities at millimeter wave
frequencies is that 1) it is no longer
necessary to calibrate the associated
radars, a process which is often difficult, and
2) that the attenuation at millimeter
wavelength between the radar and the first
range gate does not affect the algorithm.

The neural networks were trained with the
simulated liquid cloud and precipitation
model based on modified gamma drop size
distribution [3]. The modified gamma
distribution relates liquid drop diameters to
the number of drops per drop size interval in
a unit volume according to:
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where

)(Df  is the drop size distribution in units of
number of drops per micrometer per m3,
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and α and γ are shape parameters, D drop
diameter and Rc is the mode radius of the
distribution.



The following modified gamma distribution
parameters were used to generate 10,000
five range cell profiles of cloud and
precipitation conditions for training:
Rc varied from .5 to 200 micrometers,
according to
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where c is the range cell to range cell

correlation (0.3 or 30 %) and )(rX  is a
uniform random variable for the r-th range
gate. LWC was varied from .001 to 2 g/m^3,
as a function of Rc as
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γ  from .3 to 1.8, as
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and α  from .1 to 4.1 according to
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Also, temperature was assumed to uniformly
vary from �15 to +5 deg. C in the Mie
scattering and extinction equations used for
calculating the radar observed reflectivity
profiles. The network topology, training and
data processing were implemented with the
Stuttgart Neural Network Simulator (SNNS)
software  (ftp.informatik.uni-stuttgart.de)
running under Linux 6.0.

3. EXPERIMENT RESULTS

The neural network algorithm was first
tested with multi-frequency radar reflectivity
data collected during the Mount Washington
(New Hampshire) Sensors Project (MWISP)
in March and April of 1999 [1]. MWISP was
a multi-investigator experiment with
participants from Quadrant Engineering,
NOAA Environmental Technology
Laboratory (NOAA/ETL), the Microwave
Remote Sensing Laboratory (MIRSL) of the
University of Massachusetts and others.
Radar systems from UMass and NOAA/ETL

were used to measure X-, Ka- and W-band
backscatter data from the base of Mt.
Washington, while simultaneous in-situ
particle measurements were made from
aircraft and from the observatory at the
summit. Figure 2 shows altitude profiles of
the neural net estimated (*) and an in-situ
ATEK probe derived (solid line) LWC
measured on April 14 at 19:07 UTC,
agreeing in altitude to within a few hundred
meters and in magnitude to an error of less
than 20%.

Figure 2. LWC derived from ATEK
soundings (solid line) with overlay of
radar-derived LWC (*�s).

4. CONCLUSIONS

Extracting quantitative information from
radar measurements, other than range and
Doppler velocity, is difficult. Artificial neural
networks offer a possible solution to a class
of problems when the forward problem is
well characterized. Here, an artificial neural
network was applied to estimate liquid water
content and drop size in clouds and
precipitation from 10, 35 and 95 GHz radar
reflectivity profiles. The retrieved liquid water
content agreed with in situ radiosonde
measurements to within 20% in magnitude.
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