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1. Introduction

The aim in radar rainfall (RR) estimation is to produce
approximations of rainfall that are as close to the physical truth as
possible.  However, the question of how to rigorously formalize
the requirement of “closeness to the truth” has no unambiguous
answer.  Ciach et al. (2000) discuss two RR estimation
performance measures that contradict each other.  One is the
commonly-used mean square estimation error (MSE) and the
other is a conditional bias.

The conditional bias is recognized in the statistical literature
on the error-in-variable problem (Carroll et al. 1995) as an
"attenuation" effect.  It appears when predictors are corrupted
with errors and the predictive relationship is built using least
square regression.  The resulting statistical predictions
systematically underestimate higher range and overestimate
lower range of the outcomes.  Rosenfeld and Amitai (1998)
discuss the conditional bias in the RR context and claim that their
Window Probability Matching Method removes it.  The studies by
Ciach et al. (2000) and by Ciach and Krajewski (1999) do not
confirm this assertion.

The conditional bias is just an example of a larger problem
of comprehensive and conclusive evaluation of the remote
sensing rainfall products.  Following the verification techniques
developed for the weather forecasts (Katz and Murphy 1997), one
can distinguish several quality attributes that should be utilized in
rationally based validation and intercomparison projects.  Below,
we only briefly outline this broader context and focus on the
opposition of the conditional bias and the MSE criteria.

2. Verification of RR products

Quantitative assessment of RR estimates is a complex task.
An efficient methodology should be able to describe the quality of
given products in a few informative numbers.  At present, the
technique that seems the closest to this ideal can be based on an
approach called "distribution-oriented" verification (Murphy 1997).
It derives all the quality information from the verification
distribution of RR and true rainfall:

(Rr , Rt)  ~  frt(rr , rt) , (1)

where the symbol "~" denotes relation "distributed as",  frt(.,.) is a
bivariate probability density function (pdf), Rr and Rt are the radar
and true rainfall random variables, and rr and rt are their specific
values, respectively.  The basic prerequisite to use this framework
is that, for a specified spatio-temporal domain, the distribution of
these corresponding (concurrent and collocated) values is either
known with sufficient accuracy, or can be retrieved from the
observational data.  The performance criteria are rigorously
defined in terms of this constituting distribution.  We
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now define several measures that seem to be the most important
for the verification of RR products.

1) Overall bias measures systematic overestimation or
underestimation of the RR products in comparison to the truth.
Due to multiplicative character of most of this bias sources, it is
best expressed as the following factor:

Bo  =  E{Rr} / E{Rt} , (2)

where E{.} is the operator of marginal expectation of the bivariate
verification pdf (1).

2) Association is usually defined as a degree of statistical
dependency between two random variables and its most popular
measure is the correlation coefficient.  More general measures
are also known, but have not been applied to our area yet.

3) Accuracy quantifies the average degree of correspondence
between individual pairs of Rr and Rt.  The most popular measure
of accuracy is:

MSE  =  E{(Rr - Rt )2} , (3)

and minimizing of the MSE is a central part of the most common
least-square regression techniques.

4) Conditional statistics are used to quantify behavior of one
variable at fixed values of the other.  The global measures of two
types of the conditional biases can be defined:

CB1  =  Er{ ( Et{Rt | Rr} - Rr )2 } , (4a)

CB2  =  Et{ ( Er{Rr | Rt} - Rt )2 } , (4b)

generally called type 1 conditional bias and type 2 conditional
bias, respectively.  In the literature, the CB1 is also called
"reliability" or "calibration" (Murphy 1997), whereas the CB2 has
no such special name.

5) Conditional variances quantify the average scatter between
Rr and Rt in situations when one of the variables is fixed.
Similarly to the conditional biases, there are two types of these
statistics:

CV1  =  Er{ Vt{Rt | Rr=rr} } , (5a)

CV2  =  Et{ Vr{Rr | Rt=rt} } . (5b)

where V{.|.} is the operator of conditional variance of the bivariate
verification distribution (1).

There are several interrelations between these seven
performance measures.  Some of them are still not fully
understood and ask for more research.  The CB2 describes
average differences between a true rainfall value and the
conditional expectation of the RR conditioned on this true value.
It is compared with the MSE in Section 4.

3. Mathematical framework

The conceptual model that we use below is discussed in
detail in Ciach and Krajewski (1999) and in Ciach et al. (2000).



The functional dependency between true rainrates (Rt) and radar
reflectivities (Zt) is a typical power law:

Zt  =  A Rt
b
, (6)

and the measured reflectivities Zm are corrupted with errors:

Zm  =  Zt Ez
 , (7)

where Ez describes the measurement uncertainties.  We define Rt

and Ez as independent and lognormally distributed random
variables with their standard deviations equal to σr and σe ,
respectively.  The RR estimation is based on a conversion of the
measured reflectivities Zm into estimated rain-rates Rr:

Rr  =  α Zm
1/β

. (8)

Substituting (6) and (7), we express the RR estimates as a
function of the true rainfall and the error factor:

Rr  =  c Rt
b/β

 Ez
1/β

. (9)

If the multiplier α in (8) is adjusted so that the overall bias is
removed (Bo=1), then the exponent ratio  b/β  in (9) governs the
way the estimates Rr are related to different intensities Rt of the
true rain-rates.

4. Comparison of CB2  and MSE

To compare the behavior of the CB2 (4b) with the MSE (3),
we express them as functions of the Zm-Rr  exponent and other
parameters of our model.  Using (9) and the definitions of the
independent variables, we get:

MSE(β)  =  Dr
b2/β2

De
1/β2

– 2Dr
b/β

+ Dr , (10a)

CB2(β)  =  Dr
b2/β2

– 2Dr
b/β

+ Dr , (10b)

where  Dr=σr
2
+1 and De=σe

2
+1.  These functions are nonnegative

and have single minima.  For large values of β, they are both
equal to σr

2
.  In this case, the RR estimates are equal to the

climatological average rain-rate and the estimation error is the
same as the rain-rater variance.  For small values of β, both
functions go to infinity.  However, the values of β minimizing the
MSE and CB2 differ significantly.  The MSE has its minimum at:

βms  =  b [1 + b
-2

ln(De) / ln(Dr) ], (11)

whereas CB2(b)=0.  The Figure below presents an example of the
MSE and CB2 in function of β for a system with b=1.35 and σr=2.

Two cases of the radar reflectivity error Ez are shown: σe=1 and
σe=2.

Note that the βms is always larger than b.  For a given
precipitation system defined by b and Dr, the difference between
βms and b depends on the reflectivity measurement error.  Thus,
due to the inevitable radar reflectivity uncertainties, one cannot
simultaneously optimize the MSE and CB2 criteria.  Minimization
of the MSE (the most common Zm-Rr optimization method) leads
to substantial conditional bias type 2.

5. Conclusions

Expression (9) shows that non-zero CB2 indicates that the
RR estimates are not linearly related to the corresponding true
rain-rates.  For example, for β>b, the "attenuation" effect occurs
resulting in underestimation of heavy rain-rates (compensated by
overestimation in the range of weak rain-rates).  Such a
systematic misrepresentation of the true rainfall is certainly an
undesirable effect and one would like to have it removed from the
RR products.  However, it can only be done at the cost of the
increased MSE.

Choosing between the two estimation strategies discussed
above (minimizing the MSE, or zeroing the CB2) depends
probably on a specific application of the RR products and has to
be studied in an application-oriented setup.  Our research tries to
lead in this direction through better understanding and more
rigorous definitions of the RR validation criteria and estimation
procedures.
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