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1 INTRODUCTION

The “traditional” hydrostatic approximation to the
equations of fluid motion on a sphere includes cer-
tain geometrical approximations necessary for re-
taining conservation of energy and absolute angular
momentum. In particular, the radial coordinate is
replaced by the earth’s mean radius (thereby sup-
pressing the vertical variation in the planetary an-
gular momentum), and the horizontal component
of the earth’s rotation vector is neglected. The ne-
glected terms are most significant near the equa-
tor. White and Bromley (1995) and de Verdière
and Schopp (1994) have suggested that neglecting
these terms near the equator is not justified.

We consider the importance of making the hydro-
static approximation in the context of equatorial in-
ertial instability. Inertial instability refers to a flow
becoming unstable due to its distribution of angu-
lar momentum. The simplest case, axisymmetric
circular flow, is unstable if the angular momentum
decreases with distance from the axis of rotation.
Adjustment to a stable state involves the forma-
tion of vertical rolls superposed on the circular flow
(known as Taylor vortices). In the equatorial mid-
dle atmosphere, the approximately zonal mean flow
can become inertially unstable. In the hydrostatic
system, stability requires that the angular momen-
tum be maximum at the equator and decrease with
increasing absolute latitude. Dunkerton (1981) and
others have shown the formation of Taylor vortices
in the vertical-meridional plane when the stability
condition are violated.

To focus attention on the essential dynamics, this
study is restricted to the equatorial β-plane.

2 HYDROSTATIC CASE

2.1 Governing equations

The governing equations in pressure coordinates
(x, y, p) for axisymmetric, adiabatic flow on the
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equatorial β-plane are

ut = −vuy − ωup + βyv (1)
vt = −vvy − ωvp − βyu+ Φy (2)
θt = −vθy − ωθp (3)

vy + ωp = 0 (4)

where u = Dx/Dt, v = Dy/Dt and ω = Dp/Dt,
θ is the potential temperature (equivalent to en-
tropy), Φ is the geopotential, and β ≡ 2Ω/a.

It follows from (1) and (2) that the equivalent of
zonal absolute angular momentum,

m ≡ u− 1
2βy

2 (5)

is a material invariant (Dm/Dt = 0).
The system (1)-(4) conserves the Hamiltonian

functional

H(m, v, θ) =
∫ ∫ {

1
2v

2 + 1
2βy

2m

+ E(ρ, θ) +
p

ρ2

}
dydp. (6)

E(ρ, θ) is the internal energy and ρ is the density.
It also conserves the family of Casimir invariants

C(m, θ) =
∫ ∫

C(m, θ) dydp (7)

where C is an arbitrary function of m and θ.

2.2 Linear stability

An equilibrium X0 of a set of partial differential
equations is linearly stable if the equations lin-
earized about X0 have no exponentially growing
modes.

It can be shown that X0 is linearly stable if a con-
served functional of the dynamics can be found that
is minimized at X0. The Energy-Casimir method
(see Shepherd 1990) proceeds by constructing the
combined invariantH+C, and finding conditions on
the function C(m, θ) such that X0 is a minimum.

Let X0 be an equilibrium state with

m = M(y, p), v = 0, θ = Θ(y, p), ρ = R(Θ, p)



and satisfying thermal wind balance

βy
∂M

∂p
=

1
RΘ

∂Θ
∂y

. (8)

Requiring X0 to be a critical point of H+C leads
to the restrictions on C(m, θ):

Cm = −1
2
βy2, Cθ = −cp

T

Θ
, (9)

where T (Θ, p) is the temperature, cp is the specific
heat capacity at constant pressure and the ideal gas
law p = ρRgT has been assumed. H + C is convex
(X0 is a minimum) if

Cmm > 0 (10)

Cθθ > 0 (11)

CmmCθθ − C2
mθ > 0. (12)

In terms of the potential vorticity

Q =
∂M

∂y

∂Θ
∂p
− ∂M

∂p

∂Θ
∂y

, (13)

(10)-(12) can be more instructively written as

−βy
Q

∂Θ
∂p

> 0 (14)

− 1
RΘQ

∂M

∂y
> 0 (15)

βy

RΘQ
> 0. (16)

(16) indicates that Q must have the same sign as
y. (14) expresses static stability (entropy increases
with height) and (15) inertial stability (angular mo-
mentum decreases with distance from the equator).

2.3 Nonlinear stability

An equilibrium satisfying the conditions (14)-(16)
can be shown to be nonlinearly stable (that is, sta-
ble to finite amplitude disturbances of the dynam-
ical fields). Nonlinear stability of a state X0 with
respect to a norm || · || means that for a nonequilib-
rium state X(t), and for all t > 0,

||X(0)−X0|| < ε⇒ ||X(t)−X0|| < δ(ε) (17)

We demonstrate nonlinear stability by defining
the pseudoenergy

A = H(X(t)) + C(X(t))−H(X0)− C(X0), (18)

and bounding it from below and above by distur-
bance norms for all t. Since A is conserved, it fol-
lows that disturbances do not grow without bound.

The nonlinear stability analysis provides a
method for deriving rigorous upper bounds on the
growth of instabilities. Unstable equilibria can be
considered finite amplitude disturbances to nonlin-
early stable equilibria. See Mu et al. (1996) in
which the method is applied to a related problem.

3 NONHYDROSTATIC CASE

If the hydrostatic approximation is relaxed, then
the symmetric β-plane equations include extra
Coriolis force terms in the zonal and vertical mo-
mentum equations, and the materially conserved
equivalent of zonal angular momentum is

m ≡ u− 1
2βy

2 + γz (19)

Similar conditions to (14)-(16) can be derived. Hua
et al. (1997) observed that inertial instability in
the oceans occurs when the nonhydrostatic stability
conditions are violated.
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