
1.5                                        ON THE FLUX REPRESENTATION OF INTERNAL WAVE SPECTRAL TRANSPORTS1.5                                        ON THE FLUX REPRESENTATION OF INTERNAL WAVE SPECTRAL TRANSPORTS1.5                                        ON THE FLUX REPRESENTATION OF INTERNAL WAVE SPECTRAL TRANSPORTS1.5                                        ON THE FLUX REPRESENTATION OF INTERNAL WAVE SPECTRAL TRANSPORTS    

Kurt Polzin 
Woods Hole Oceanographic Institution 
MS#21, WHOI, Woods Hole, MA 02543 

 
Abstract:Abstract:Abstract:Abstract:    Recent fine- and microstructure observations 
indicate enhanced finescale shear and strain in conjunc-
tion with bottom intensified turbulent dissipation above 
rough bathymetry. Such observations implicate the bot-
tom boundary as an energy source for the finescale 
internal wave field. An attempt is made here to describe a  
simple model for the spatial evolution of finescale internal 
waves as they propagate away from a source. Non-
linearity is explicitly treated as a flux in the spectral 
domain and dissipation is implicitly viewed as the end 
result of nonlinear transfers to high wavenumber. A gen-
eral formulation for the nonlinear transfers is discussed 
which conserves both energy and momentum.  A specific 
formulation is given to these transfers which can be 
described as a relaxation to an equilibrium power law and 
a backscattering process. 

1. Introduction1. Introduction1. Introduction1. Introduction    

Recent studies have documented a dramatic pattern a 
spatial variability in the deep ocean internal wave field.  
Above smoothly sloping abyssal plains and continental 
rise regions, finescale (vertical wavelengths of 10's to 
100's of meters) spectra are near the background levels 
associated with the empirical Garrett and Munk spectral 
model1 (Toole et al., 1994; Kunze and Sanford, 1996; 
Polzin et al., 1997; Polzin, 1999).  Levels of turbulent 
dissipation are also low there (Toole et al., 1994; Polzin et 
al., 1997) and return a diapycnal diffusivity which is small 
and approximately independent of depth, (K !  0.1 " 10-4 

m2 s-1). Above rough topography associated with the Mid-
Atlantic Ridge, levels of turbulent mixing are orders of 
magnitude larger and increase with depth.  Spectral 
levels of the finescale wave field are an order of 
magnitude larger than in the background (GM) wave field, 
implicating internal wave breaking as the source of 
turbulent energy.  Polzin et al. (1997) proposed that the 
elevated fine structure levels were associated with the 
local generation of an internal tide having horizontal 
scales which were characteristic of the bottom topo-
graphic roughness  (!1000 m).  The scattering of waves 
incident upon the roughness (including the internal tide 
reflected from the surface) may also contribute to the 
finescale wavefield. 
 
The above mentioned data suggest, as an ultimate goal, 
attaining the capability to make an entirely theoretical 
prediction for the vertical profile of turbulent dissipation 
by modeling the spatial decay of the wavefield.  A lot of 
effort has been expended by the atmospheric science 
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community on this problem. The oceanic context, though, 
is a bit different in its emphasis than the atmospheric.  In 
the atmospheric context, wave–mean flow interaction and 
the decrease of density with height play the most 
significant roles in determining the rate of momentum 
and energy deposition, with buoyancy scaling and non-
linear interactions being increasingly less prominant.  In 
the ocean, the discussion is dominated by the role of non-
linearity: Modeling the spatial decay of the finescale 
wavefield and constructing an entirely theoretical pre-
diction for the vertical profile of turbulent dissipation 
requires a representation of the spectral transports 
associated with nonlinear interactions between the 
waves. This note serves to advertise recent advances 
along these lines presented in Polzin (2001a,b).  In the 
following, the role and treatment of nonlinearity in atmos-
pheric spectra is discussed prior to a consideration of the 
oceanic problem.   

2. Atmospheric Spectra2. Atmospheric Spectra2. Atmospheric Spectra2. Atmospheric Spectra    

Atmospheric internal wave energy spectra admit to a 
succinct generalization, being largely independent of 
space and time.  Empirical models (VanZandt and Fritts 
1989) describe a separable spectrum:  

                     0( , , ) ( ) ( ) ( )E E A B# $ % # $ %& '                   (1) 

where # = m/m# is a nondimensional vertical wave-
number with  m# characterizing the energy containing 
scale of the wavefield, $ is the instrinsic frequency and 
the % spectrum quantifies the azimuthal orientation of the 
wavefield.  The spectral amplitude is given by E0 = N2/10 
m#2.  The vertical wavenumber and frequency spectra are: 
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where N and f are the buoyancy and Coriolis frequency, 
respectively, and power laws of s = 1, t = 3 and  p = 5/3 
are representative.  Upward energy propagation at all 
vertical wavenumbers is generally assumed. The most 
universal aspect of this model is the high wavenumber 
portion of the spectrum.  
 
Observed spectra tend toward a form of 3 N2m-3 at high 
wavenumber, with 3 being remarkably independent of 
time, space and meteorological conditions (e.g., Dewan et 
al., 1984; Wu and Widdel, 1991).  Saturation arguments 
have been forwarded to explain this universality.  These 
include linear instability (e.g., Dewan and Good, 1986; 
Smith et al., 1987) and Doppler shifting of small-scale 
waves by the horizontal velocities of larger scale waves 
(e.g., Hines, 1993).  The former implies the presence of 



diabatic processes removing energy from waves having 
finite wavenumber.  The later is one representation of 
non-linear adiabatic interactions between internal waves, 
conserving momentum and energy, but not, in general, 
action. 
 

#

 
 
Figure 1.Figure 1.Figure 1.Figure 1. A schematic representation of the atmospheric shear 
spectrum.  The dashed line denotes the VF89 spectrum with roll-
off at  m# and m-3 saturation regime.  The solid lines depict the 
evolution of  the spectrum for decreasing density (shifted up-
wards) and increasing wavenumber associated with propagation 
into increasing startification or towards a critical layer. 
 
Internal gravity waves represented by (1) [Figure 1] will 
evolve in response to changes in meteorological con-
ditions.  These can be assessed in the context of conserv-
ative, linear internal wave propagation.  This implies the 
vertical wavenumber varies as: 

                        ( )( ) / ( )m N z U z c& 2                                 (4) 

where U is the background horizontal current and c = 4/k 
is the horizontal phase speed relative to the ground.  The 
spectral amplitude evolves such that the vertical flux of 
horizontal momuntum,  
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where u! and w! are the perturbation velocities associated 
with the wavefield and Cgz is the vertical group velocity, is 
independent of height (the effects of rotation have been 
neglected for the sake of clarity in exposition).  This later 
condition dictates how E(m) varies in response to 
changes in  m  associated with changes in  N(z) or  U(z) 
and that  E(m)  increases in proportion to decreases in " 
(Figure 1).   
 
The issue is that this conservative, linear wave 
propagation often implies a transfer of energy to higher 
wavenumber and/or increase in amplitude so that the 
high wavenumber portion of the spectrum exceeds the 
saturation condition (Figure 1).  In such instances either 
instability or nonlinearity is invoked to argue for a 
relaxation of the spectra back to a saturation line, with 
the excess energy considered to be transfered to smaller 

scales.  In a practical sense, this means defining how one 
modifies (4) at m# to account for saturation. Hines (1997) 
resolves this as 
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where # is an O(1) constant, u!rms is estimated over m $ 
m# and z0 is a reference level. Fritts and Lu (1993) 
suggest:  
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with ( )
0

ˆ ( ) ( ) / ( ) ( ) .m z N z U z U z& 2  One could, as well, apply 

linear instability criteria to individual elements of the 
spectrum (e.g.,  Lindzen 1981).   
 
3. 3. 3. 3. Oceanic SpectraOceanic SpectraOceanic SpectraOceanic Spectra    
 
Oceanic vertical wavenumber (m) spectra of shear (Sz) 
tend to exhibit a characteristic form depicted in Figure 2.  
The spectral shape for wavenumbers m < mc is the GM76 
model:  approximately white (m# < m < mc) with 
magnitude obeying WKB scaling (Sz % N2).  At the lowest 
wavenumbers, the spectrum rolls off as Sz % m2/(m# + 
m)2, at a wavenumber m# = 3*/1300 m (N/N0) equiv-
alent to mode 3 (N0 = 3 cph). The GM models make no 
reference to the background flow and while N2 is highly 
variable, the density is constant to within 1%. The 
dynamical content of the GM models is limited to 
consistency with linear propagation and buoyancy scaling 
in the hydrostatic limit.  The wavefield is considered to be 
horizontally isotropic and vertically symmetric:  there is no 
preferred direction for wave propagation. It is also consid-
ered to be horizontally and temporally homogeneous, or 
in other words, universal.  Consequently there are no 
sources, no sinks, nor any transfers of energy in either 
the spatial or frequency domain. The degree of agree-
ment between these models and routine observations is 
astounding: deviations beyond a factor of 2 or 3 are rare.  
For comparison with (1), the GM model is: 
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with E0 = 6.3 " 10-5, b = 1300 m and N0=3 cph.   
 
This is not to say, though, that the oceanic wavefield is 
entirely linear and inviscid.  The uniform level of the shear 
spectrum (that is,  E(m) % m-2!) for vertical wavenumbers 
m# < m $ mc is believed to be set by self-interactions 
within the internal wavefield.  Models of both resonant 
interactions and eikonal representations of wave–wave 



interactions suggest that the uniform level of the GM76 
and M81 shear spectra2 is statistically stationary with 
  

#

 
    
Figure Figure Figure Figure 2.2.2.2. A schematic representation of the oceanic shear 
spectrum. The thick line denotes the GM76 spectrum with m-1 
roll-off and associated turbulence spectrum. The turbulent shear 
spectrum assumes universal, isotropic turbulence.  The partial 
spectra having cut-offs mc at lower wavenumber are depicted 
with thin lines.  The figure associates spectral levels S(mc ) of 3 
and 9 times the GM spectrum with dissipations 9 and 81 times 
larger. The spectral transition points are  m#,  mc, 1/Lo, and 1/Lk. 
 
 
respect to internal wave interactions. One way to gauge 
the strength of the non-linearity is to estimate the 
nonlinear time scale (&trans) from the wave frequency  ', 
turbulent dissipation ( associated with internal  wave 
breaking and energy density E(m): 

       ( ) ( ) / /E mtrans cm m m m@ $ $ A" & " B               (11) 

where mc is a cut-off wavenumber defined from the shear 
variance [S2(m)],  
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and it has been assumed that the downscale transport at 
m is equal to the dissipation rate. For the GM76 
spectrum, mc represents a 10-m vertical wavelength.  In 
the abyssal Brazil Basin, 2*/mc is approximately 100 m.   
 
Beyond mc, the spectrum falls as approximately m-1.  
From an observational standpoint (Gargett et al., 1981, 
Duda and Cox 1989, Gregg et al., 1993), there is 
evidence that mc is independent of N and varies inversely 
with the average shear spectral density of wavenumbers 
m < mc.  However, both Duda and Cox (1989) and Gregg 
et al.,  1993 point to quantitative exceptions.  The m-1 
region between mc  and Lo-1 corresponds to the atmos-
pheric saturation range, albeit at a somewhat higher 
spectral level, with Eocean (m) B (1/2) N2 m-3 versus 

2The GM75 spectrum specifies an m-1/2 power law. 

Eatmos (m) B (2/5*) N2 m-3.  My personal predilection is to 
interpret the roll-off mc as being a response to increasing 
adiabatic non-linearity:  Wave breaking associated with 
shear instability, for example, appears to be an important 
process only for wavenumbers m > 2 mc, Polzin (1996).  
Non-linearity thus appears to play a much more important 
role in shaping the oceanic internal wave spectrum and 
has thus received more detailed consideration in that 
context. The following describes an attempt to incorporate 
non-linearity explicitly into a propagation model.   
 
4. Conservation State4. Conservation State4. Conservation State4. Conservation Statementsmentsmentsments    
 
Consideration of the fluxes of energy through the faces of 
a kinematic box (Figure 3) in the spectral–spatial domain 
leads to the following energy balance:3  
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where ED(m,$,z,t) is the vertical wavenumber-frequency 
energy density of either the upward (+) or downward (–) 
propagating wavefield,  |Cgz| = ($2 – f2)(N2 – $2) /$ m 
(N2 – f2) is the vertical group velocity]; down-scale 
spectral transfers of energy are represented by 
Fe

D (m,$,z,t); and spectral transfers in the frequency 
domain are given by Ge

D (m,$,z,t).4  
 
This equation defines the evolution of the vertical 
wavenumber-frequency energy density as a function of  
vertical coordinate and time.  The fluxes Fe

D
 (m,$) and 

Ge
D (m,$) represent  the transfer of wave energy in 

vertical wavenumber-frequency space associated with a 
variety of  

physical mechanisms: wave–wave interactions, buoyancy 
scaling and wave–mean flow interactions. Of exclusive 
interest here are wave–wave interactions. The source-sink 
terms on the right hand side of (13) can represent either 
the production or dissipation of energy or the transfer of 
energy between waves having different wavenumber and 
frequency.  The resonant interaction between members of 
a triad (e.g., Müller et al., 1986) is an example of the 
later.  Only flux representations of wave–wave 
interactions are considered here.  In the oceanic context, 
wave generation occurs at the boundaries (e.g., internal 
tide generation or atmospheric forcing) and is best 
represented as a boundary value problem rather than as    

 

3ED(m,$,z,t) F ED  is the vertical wavenumber-frequency energy 
density with direction of energy propagation denoted by either + 
or –.  The notation ED (m,z,t) [or FD(m,z,t)] denotes integration 
over the frequency domain, ED (m,z,t) = !ED (m,$,z,t)d$.  
Likewise, the absence of the (D) superscript denotes summation 
over both upward and downward propagating wavefields.  
 

 

4The convention has been taken that both wavenumber and 
frequency are positive.  The direction of propagation or sign of a 
spatial flux is given explicitly and Cgz has been assumed to be 
positive definite.  



 

 
 
Figure 3. Figure 3. Figure 3. Figure 3. The energy balance for the vertical wavenumber–
frequency energy density spectrum, E(m, $,z), at vertical 
wavenumber m2, frequency $2 and vertical coordinate z2.  The 
vertical flux of energy is CgzE.  Transports of energy to small 
scales are represented by F.  Transports of energy in the 
frequency domain, G, are not depicted. 

 
having an  So

D representation.  Finally, dissipation is 
viewed as being implicitly represented in (13) as high 
wavenumber transports F rather than having an explicit 
Si
D representation.  Setting the righthand-side of (13) to 

zero and integrating over the vertical wavenumber, 

frequency domain; ;0
N dm df $GC C  returns:  
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in which no flux boundary conditions have been 
implemented  F(m = 0, $) = 0, G(m,$ = f) = 0 and 
G(m,$ = N)=0.  Here Ê  represents the total energy and 
Eflux the total vertical energy flux.  The high wavenumber 

transport ( , )FN m df e $ $& GC  is interpreted as repre-

senting the rate of dissipation of internal wave energy.   
 
5.  A General Formulation5.  A General Formulation5.  A General Formulation5.  A General Formulation    
 
With a zero righthand-side, (13) does not conserve wave 
momentum.  This result can be obtained by multiplying 
(13) by k/H$ = H($)m with H = [($2 - f2)/ $2(N2–$2)]1/2 
and identifying the downscale transport of wave 
momentum as Fp = (k/$)Fe, etc.  It is, however, possible to 
construct an [So

D – Si
D] representation that serves to 

conserve momentum while still conserving energy (Polzin, 
2001a).  The trick is facilitated by realizing that, while 
energy is positive definite, momentum is a signed quan-
tity.  The conservation of momentum can be guaranteed 
by the backscattering of wave energy into an oppositely 
signed wavevector at a rate in proportion to the spectral 
transports so that no net energy is generated or 

dissipated.  In terms of an upward–downward decompo-
sition, a general expression is 
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Note that the equation for the total energy density E = E+ 
+ E– has a zero righthand-side.  Thus energy is conserved.  
Multiplying (15) by D k/$, recognizing that PD = D k ED/$ 
and combining terms returns  
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Thus momentum is conserved.   
 
6666.  Specific Flux Representations.  Specific Flux Representations.  Specific Flux Representations.  Specific Flux Representations    
 
Potential representations for F and G are discussed in 
Polzin (2001a).  Specifically,  

       4 1( , ) ( ) ( , ) ( ) ,F m Am N E m E m$ % $ $D 2 D&         (17) 

with A = 0.10 and  
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In (17), %($) accounts for the conversion from horizontal 
to vertical wavenumber and conversion from shear 
spectral density to energy density by invoking a linear 
dispersion relation.  The specification of A = 0.10 renders 
(17) to be consistent with Polzin et al. (1995).  Equation 
(17) represents a non-local flux as the transport at 
vertical wavenumber and frequency (m,$) is proportional 
to the shear spectral density integrated over all 
frequencies.   
 
An expression quite similar to (17) was utilized by Polzin 
et al. (1995) in a model/data validation study.  When 
evaluated at m = mc, and with factors involving wave 
frequency estimated from the shear–strain ratio, (17) 
accurately predicts the rate of dissipation of turbulent 
kinetic energy A to within a factor of D2, the approximate 
statistical uncertainty of the measurements.   
 
The expression given in (17) was constructed to have the 
property of relaxing perturbed internal wave spectra back 
to an m-2 power law.  This can easily be inferred by 
realizing that F is non-divergent for such spectra. It was 
not constructed to produce an m-3 saturation regime.  
This will have little impact on the vertical distribution of 
momentum and energy flux divergences.  With an O~1 
non-linear time scale (c.f. (11)), waves within the oceanic 



saturation regime will dissipate before propagating one 
vertical wavelength.   
 
With the specification (17), the associated term on the 
righthand-side of (15) becomes: 
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This closely resembles Bragg scattering in the resonant 
interaction scheme (Polzin, 2001a).  It will serve to equil-
ibrate a vertically anisotropic wavefield.   
 
There appears to be little consensus regarding the net 
frequency domain transports.  The null hypothesis of (18) 
has therefore been put forward. One possible inter-
pretation of (18) is that the internal wavefield does no net 
work on itself.   

7. Discussion7. Discussion7. Discussion7. Discussion    

The work presented above describes a method for asses-
sing the spatial and temporal evolution of an internal 
wave  spectrum. This method invokes a mixed 
spatial/spectral representation that does not invoke a 
wave packet formulation. This enables the construction of 
quite general flux representations for nonlinear transports 
that conserve both momentum and energy.  Momentum 
conservation is attained by transferring energy into an 
oppositely signed  wavevector.   
 
A closure scheme for the spectral transport of energy was 
also presented. This closure scheme is a simplistic treat-
ment of interactions between internal waves.  It contains 
the following three ingredients:  (i) consistency with linear 
propagation in the absence of non-linearity, (ii) high wave-
number vertical wavenumber domain transports in agree-
ment with an empirically defined transport F(mc) and (iii) 
relaxation back to an equilibrium vertical wavenumber 
spectrum. In the long term, the potential revision of trans-
port laws as dictated by observational studies is envi-
sioned. A more detailed description of this work is 
presented in Polzin (2001a).  Idealized solutions to the 
governing equation (15) with (17) and (18) are considered 
in Polzin (2001b).   
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