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1 INTRODUCTION 
We study idealized models of the global climate to 

examine the hypothesis that the climate system adjusts 
itself to the state of maximum entropy production as first 
discussed by Paltridge [1975].  We examine a 
hierarchy of simple box models of atmosphere, ocean, 
and the coupled system, and calculate analytical 
solutions for extremal entropy production.  The box 
model solutions are compared to the output of general 
circulation models (GCM).   

 
2 Theory Of Maximum Entropy Production Based 

On Box Models 
Assuming the local thermodynamic equilibrium, we 

define the time rate of change of specific entropy, ds/dt,   
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where dQ/dt is diabatic heating per unit mass.  The 
global integral of Eq. (1) is the total entropy flux into the 
climate system, and is balanced by the internal 
production of entropy at steady state.  We define the 
global entropy production, dS/dt, as; 
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where ρ [kg m-3] is the density of the fluid.   
 
2.1 2-Box Model Of Atmosphere And Ocean 
Let us consider a single hemispheric box model of 
climate (FIG.1) which can be regarded both as the 
atmosphere or as the ocean. The model consists of 
equatorial region  (with temperature Te [゚ C]) and polar 
region (with temperature Tp).  We restore Te and Tp to 
Te* and Tp* with inverse time scale of kT [s

-1].  In the 
atmosphere, Te* and Tp* are radiative-convective 
equilibrium profile and kT is the radiative time scale.  In 
the ocean, Te* and Tp* are air-temperature above the 
sea surface and kT is the time scale of air-sea 
interaction. The global entropy production is; 
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where Tref=273 [K].  Assuming that the system is in 
steady state and in global energy balance, the entropy 
production becomes a quadratic function of X and it has 
its maximum at; 
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where C [J K-1] is the heat capacity of each box,  
∆T=Te-Tp, and ∆T*=Te*-Tp*.  In the atmosphere, 
within reasonable parameter range, XA= 3.8 [PW] and 
∆TA=10 [K].  In the ocean, assuming that a half of the 
Earth’s surface is covered by the ocean, XO= 4.0 [PW] 
and ∆TO=5 [K] which is consistent with gross measure 
of present climate.   
  
FIG.1: 2-Box model 
  
X is the meridional  
heat transport actross 
30N or 30S.   
 
 
2.2 Coupled Box Model 

We couple the atmosphere and the ocean box 
models in the previous section and maximize the global 
entropy production.  The entropy production of the 
coupled system is the sum of entropy production in the 
atmoshere, ocean, and air-sea interaction.  The global 
entropy production is; 
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It is at its maximum when  
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The extremal solution can determine the total 
meridional heat transport and ∆TA which is determined 

Te Tp 
X 

-kT(Te-Te*) -kT(Tp-Tp*) 



by identical expression as Eq. (4).  However, individual 
values for XA and XO and ∆TO are not determined.  
Additional constraints, such as the parameterization of 
thermohaline circulation, are needed to fully determine 
the system.   
 
3 Testing The Theory By Diagnosing Simplified 

GCM Experiments 
We compare the extremal solutions of box models 

to the output of zonally averaged and 3D versions of 
MITGCM [Marshall et al. 1997] of the atmosphere and 
the ocean with idealized forcing.   
 
3.1 Zonally Averaged Atmospheric GCM 

The zonally averaged model employs the trans- 
formed Eularian mean formulation[Wardle and Marshall  
2000] and simplified thermodynamics following Held 
and Suarez[1994]. First, we run the model with various 
eddy diffusivities.  Unlike the box model, XA is 
calculated by detailed dynamics.  We compare the 
spatial average of time-averaged temperature field with 
the box model.  The diagnosis confirms the 
relationship between the heat transport and entropy 
production predicted by the box model (FIG.2).  The 
maximum in the entropy production is near XA=3.8 [PW] 
and is consistent with a reasonable value for the eddy 
diffusivity.   
 
FIG.2 Atmospheric 
GCM diagnosis 
 
Solid line: Box model 
+ : GCM diagnosis 
Each point represents 
different eddy  
diffusivities.  
 

Secondly, we made model runs with various 
meridional temperature gradient in the forcing in order 
to test the relationship in Eq. (3) and (4).  The GCM 
diagnosis seems to support the linear relation between 
the forcing (∆TA *) and diagnosed ∆TA and XA.  We also 
examine the relationship between the restoration 
timescale kT and heat transport.   
 
3.2 Zonally Averaged Ocean GCM 

We use a simplified ocean GCM to examine the 
entropy production in a hemispheric basin.  The model 
employs parameterized zonal pressure gradient, which 
is loosely based on Wright and Stocker [1991].  The 
model is forced by the restoration of SST to an idealized 
profile of air temperature.  We make model runs with a 
range of diapicnal diffusivities.  The extremal state is 

found near Kv = 2 10-4 [m2s-1] and is consistent with Eq. 
(4) and (5).   
 
3.3 Extensions to An Eddy Resolving Model 

We examine the entropy production in an eddy 
resolving atmospheric GCM which employs the same 
thermodynamic forcing as the zonally averaged model.  
We diagnose the model field for comparison with the 
analytical relationships calculated by variational method. 
The application of variational calculus suggests; 
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where µ is the Lagrange Multiplier.  We show that 
diagnosed time-averaged temperature field from GCM 
has similar trend as Eq. (8) and that meridional heat 
transport predicted by Eq. (9) is comparable to the 
diagnosed heat transport of the GCM.   
 
4 Summary and discussion 

The extremal solution exhibits several remarkable 
properties. (1) the box model estimate of heat transport 
and pole-equator temperature difference are in a 
plausible agreement with the gross measure of present 
climate. (2) the box model provides analytical solutions 
which can be tested against more complicated models. 
(3) simplified GCMs seem to support extremal entropy 
production states within a reasonable parameter range.   
Global energy balance and extremal principle are not 
sufficient to fully determine the coupled system. 
Additional constraints could be used for closure 
condition.   
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