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Abstract

The coding and compression of weather imagery can
be improved by following a domain-specific approach in
which the characteristics of the data are taken into ac-
count in devising the encoding scheme. We show that
by predicting that the next valid data element is identical
to the current one, a dramatic reduction in source entropy
(information content) is achieved. We also show that en-
coding runs of missing values in combination with such
a prediction scheme makes further compression unnec-
essary. Finally, the method introduced in this paper is
compared with existing methods and shown to outper-
form all of them.

1. Introduction

A study was carried out on seventy volumes of radar re-
flectivity data collected by the Weather Service Radar in
Fort Worth, Texas on May 5, 1995. These volumes pro-
vide an indication of the distribution of reflectivity data on
a typical storm day. Since the amount of valid data is
higher on a storm case, these volumes also serve as a
worst case scenario from a compression stand-point. In
the storm cases we considered, even considering only
the lowest tilt of the radar where the highest portion of
valid data values are to be found, nearly 60% of the data
elements in the case were missing. The distribution of
the various data values in the lowest elevation tilts of the
radar over the entire case is shown in Figure 1a.

It may be noted from Figure 1a that there is a spread
of reflectivity values over which the data are distributed.
The information content in the case may be obtained
from the Shannon entropy (Shannon, 1948), defined as:
h = −

∑
i pilog2pi where the summation is over all the

possible symbols1 in the data set. Defining the entropy
this way makes the implicit assumption that the symbols
we are summing over are all statistically independent.
Because radar data tends to be correlated, entropy cal-
culated in this manner can be misleading. If the data are
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1The symbols are what needs to be represented. Each symbol

could correspond to an actual data value, e.g. 3 dBZ, or to a value
in some transformation of the data.

Figure 1: (a) Distribution of radar reflectivity values in
−15 dBZ to 64 dBZ in 0.5 dBZ increments in the lowest
elevation tilt of the radar. Missing values are not shown in
this figure; if they had, they would have been at 0.59. (b)
Distribution of the error in the predicted valid reflectivity
values. Missing values are considered a separate class
and are not included in the prediction algorithm.

decorrelated, then the entropy equation may be used to
compute the true information content.

Because Level II reflectivity data ranges from−15 dBZ
to 64 dBZ, in increments of 0.5 dBZ, the number of sym-
bols corresponding to valid data is 159. With missing
data considered another symbol, we have 160 symbols
over which the entropy may be calculated. For the data
case studied, whose distribution is shown in Figure 1a,
the entropy was 3.74 bits per symbol. Thus, a typical el-
evation tilt that contains 460 gates and 365 radials of re-
flectivity data (167900 symbols) can be represented us-
ing less than 80,000 bytes2 with an ideal encoding.

2. Methods

Reflectivity data tends to be highly correlated. We can
use this correlation between successive data elements
profitably by dividing the data into two classes – valid re-
flectivity values and missing data – assigning a symbol
to missing data directly, and doing a linear prediction on
valid reflectivity values. We are “predicting” that the next
range gate with valid reflectivity data has the same re-
flectivity as the current valid data value.

Doing the linear prediction (LP) this way has several
advantages. By keeping the two classes separate, we re-

2167900 symbols × 3.74 bits/symbol × 8 bits/byte



Elevation Raw RLE RLE+LZ LP LP+BSH LP-RLM LP-RLM+BSH
0.5 169280 146020 61167 66497 47998 43456 43660
2.4 131008 58214 27263 35879 21900 19078 19460
3.3 98624 40904 19198 26121 15629 13272 13679
4.3 79488 30862 14346 20186 11824 9847 10281
5.2 79272 26306 12170 18610 10004 8373 8794
6.2 64592 23014 10552 15455 8668 6919 7375
7.5 50279 20184 9723 13247 8201 6958 7247
8.7 46609 18062 8728 11962 7332 6227 6456
10.0 40370 16294 7931 10509 6612 5693 5893
12.0 36600 14292 6910 9252 5767 5016 5160
14.0 32850 12810 6221 8127 5070 4474 4597
16.7 29120 11394 5582 7068 4481 3971 4029
19.5 25340 10202 4933 6241 4012 3618 3628

Table 1: A comparision of various lossless compression methods on a volume of radar reflectivity data. RLE is run-
length encoding; LZ is Lempel-Ziv compression; LP is linear prediction of valid data values; BSH is block-sorting
followed by Huffman coding; LP-RLM is linear prediction of valid data values combined with run length encoding of
missing values. The data corresponds to a supercell thunderstorm in Fort Worth, Texas in March 2000. LP-RLM
significantly outperforms all other methods and is not further compressible.

duce the dynamic range of our symbol set since straight-
forward numerical difference will incur jumps whenever
the data change over from missing to valid or valid to
missing. Because of the frequency of missing data, we
will allocate a single bit to it. Thus, linear prediction of
missing data can not decrease the bit entropy of the en-
coded data. Computing the difference, rather than doing
run-length encoding, allows us to profitably use not only
a zero-change between successive elements, but also
small changes. In fact, for the same data case whose
reflectivity values are shown in Figure 1a, the distribu-
tion of the various symbols (except the missing ones) is
shown in Figure 1b. The symbols correspond to a range
of −79 dBZ to 79 dBZ. The Shannon entropy for the
data, after being processed in this manner, is only 2.82
bits per symbol.

Huffman (1952) derived a method of assigning bits to
symbols where more frequent symbols receive shorter
bit sequences in such a way that the entropy of the en-
coding scheme is within 1% of the Shannon entropy,
the theoretical limit. Huffman’s encoding method was
used to obtain a way of representing the linear-predicted
stream of symbols. The encoding had a bit entropy of
2.85 bits/symbol, very close to the source entropy of
2.82. The encoding, by taking care to assign shorter
sequences to more frequently occuring data elements,
in itself, leads to a Huffman code with a bit entropy of
about 2.85 bits/symbol. Thus, a typical elevation tilt that
contains 460 gates and 365 radials of reflectivity data
(167900 symbols) can be represented using less than
60,000 bytes in a storm environment. This is an improve-

ment of 25% over directly encoding the data.

In clear air, we would require one bit for each missing
data element and can therefore represent the data using
just 20,000 bytes. Yet, there is not 20,000 bytes of infor-
mation in a clear-air tilt. Although the encoding is very
efficient, we can compress the data further by transform-
ing it further. While we have arranged to assign short
bit sequences for commonly occuring data elements, we
still have not used the fact that certain strings of symbols
may repeat within the data.

We considered two methods of transforming the Huff-
man encoded stream of linearly predicted symbols in or-
der to decorrelate the data: (a) Compress the linear pre-
dicted data using a general purpose compression tech-
nique. This works because general purpose compres-
sion techniques try to achieve an output where the output
bits are statistically uncorrelated. If the output bits were
correlated, then the compression technique could have
done better. (b) Use run-length encoding on the missing
symbols. The implicit assumption is that the predicted
errors in the valid values are uncorrelated, i.e. that the
reflectivity data are a first-order Markov process with an
autoregressive coefficient of 1. In this case, run-length
encoding the predicted errors in the valid values would
not have much of a pay off.

It is possible to apply a reversible transformation to the
data so that these strings of symbols repeat (Burrows
and Wheeler, 1994). The reordered set of strings is then
Huffman coded once again, this time using an encoding
scheme based on the reordered data. Since the Huffman
coding in this case changes from tilt to tilt (depending on



the data), the coding is stored with the data.
The results here vary, but in the worst case, a tilt of

460 gates and 365 radials containing storm data can be
represented using about 48000 bytes, an improvement
of about 20% over the linear predicted encoding scheme.
When there is less valid data, the size of the encoded
data can drop to about 4000 bytes.

Having recognized that it is runs of missing data that
are compressible further, we can choose to run-length
encode missing data alone. The process, then, is as
follows during the compression stage: 1. Initialize the
predictor and the missing counter to zero. 2. If the next
value is missing, increment missing counter. 3. If the
next value is valid, find Huffman code for the difference
from prediction. Write code for missing, followed by run
length. Then, encode the valid difference. Reset missing
counter to zero and the predictor to current valid value.
This is a reversible transformation.

We can formulate a Huffman code for the distribu-
tion of predictor errors, missing values and missing run
lengths. If the run length is more than the number of
available symbols, then the data is simply encoded as
several shorter runs.

The source entropy of this process turns out to be
about 4.78 bits per symbol with a Huffman representa-
tion of 4.82 bits per symbol. Although the entropy seems
to have increased, the reader should note that because
of the run-length encoding process, the number of sym-
bols has decreased. On both the training and the test
cases, this method proved to be more efficient than sim-
ply using linear prediction on the valid values.

Following such an encoding with block-sorting com-
pression and an adaptive Huffman code (BSH) is
counter-productive. The size of the data increases due
to the need to store the adaptive code.

3. Results and Discussion

Results are presented for a complete volume of radar
reflectivity collected at Fort Worth, Texas on March 28,
2000, a test case that is different from the case that
was used to obtain the distributions of reflectivity val-
ues shown in Figure 1. The data are encoded and com-
pressed using various schemes currently used for radar
data, as well as more general purpose methods avail-
able. The details are shown in Table 1.

The method of encoding used operationally in Weather
Service Radar (WSR-88D) products is run-length en-
coding (RLE) (OSF, 1998). As can be noted from Ta-
ble 1, the method described in this paper (LP-RLM)
outperforms RLE by nearly a factor of three. Follow-
ing the run-length encoded sequence by a good general
purpose compression algorithm such as the Lempel-Ziv
method (Gailly, 2000; Ziv and Lempel, 1977) reduces the

Figure 2: Encoding a radial of reflectivity data with the
values given in the first row, i.e. 10 missing values fol-
lowed by 20 dBZ, 21 dBZ, etc. LPis Linear Prediction
while in LPRLM is Linear Prediction with run-length en-
coding of missing values.

size of the data significantly. Again, from the table, it is
seen that the domain-specific linear prediction encoding
scheme described in this paper achieves sizes close to
the RLE+LZ version, at least in those tilts with significant
amounts of data. Following the linear prediction with a
block sorting compression algorithm (LP+BSH) improves
compression such that this method outperforms RLE+LZ
by about 20%. Using a combination of linear predic-
tion on valid values along with a run-length for missing
ones (LP-RLM), and using a combined Huffman code
improves the result of even LP+BSH significantly. Com-
pressing the result of the LP+RLM method with block sort
actually increases the size, showing that the result of the
LP+RLM encoding is not further compressible.

References

Burrows, M. and D. Wheeler: 1994, A block-sorting lossless
data compression algorithm. Technical Report 124, Digi-
tal Equipment Corporation, Palo Alto, California, available
via http from gatekeeper.dec.com/pub/DEC/SRC/research-
reports/abstracts/src-rr-124.html.

Gailly, J.-L.: 2000, Gzip. http://www.gzip.org.

Huffman, D.: 1952, A method for the construction of minimum
redundancy codes. Proceedings of the IRE , 40, 1098–1101.

OSF: 1998, Interface control document for product specifi-
cation. Technical Report 2620003A, WSR-88D Operational
Support Facility, Norman OK, available on request from OSF
3200 Marshall Ave, Ste 100, Norman OK 73072.

Shannon, C.: 1948, A mathematical theory of communication.
Bell System Tech. J., 27, 379–423.

Ziv, J. and A. Lempel: 1977, A universal algorithm for sequen-
tial data compression. IEEE Trans. on Information Theory ,
IT-23, 337–343.


