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Abstract

A novel method of performing multiscale segmentation
of radar reflectivity data using statistical properties within
the radar data itself is introduced. The method utilizes a
K-Means clustering of texture vectors computed within
the reflectivity scan.

Splitting an image into several components, by assign-
ing one of these components to each pixel in the image,
is termed image segmentation. The traditional way to
segment radar reflectivity images is to term contiguous
areas within a reflectivity band, for example all adjoining
gates with reflectivity values between 40 and 45 dBZ a
“cell” or a region (Johnson et al., 1998). There are nu-
merous problems with such hard thresholds. These have
typically been resolved heuristically, using runs with tol-
erances (Johnson et al., 1998) or using fuzzy logic (Lak-
shmanan and Witt, 1997).

In this paper, we present a more sophisticated ap-
proach that uses, besides the actual reflectivity value
within a gate, the distribution of reflectivity values around
that gate. This distribution is used to cluster similar pixels
together (Lakshmanan et al., 2000).

1. Introduction

Many image processing algorithms and techniques lend
themselves to a concept of scale — that the results of the
analysis would be different if one were concerned with a
different level of detail. Radar data algorithms (e.g: Wolf-
son et al. (1999); Johnson et al. (1998)) have typically
focused on a single scale in isolation. Here, we intro-
duce a method of extracting all the scales from an image
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at once in such a manner that there is an explicit, hier-
archical relationship between the segmented results at
different scales.

This is, however, not the way multiscale segmenta-
tion is commonly approached. Multiscale segmentation
usually refers to segmentation performed on images that
have been blurred to different degrees. Traditionally, mul-
tiscale segmentation is done in one of two ways. Image
pyramids where wavelets or filter banks are employed
to obtain the image at different scales (with the original
image as the most fine resolution available). Each of
these images is then segmented. The second way uti-
lizes quadtree decomposition where the entire image is
assumed to be a single region, then split into smaller re-
gions, on each of which the process is repeated. Similar
regions are merged at each stage.

Typically, the relationship between the segmented re-
gions at the different scales are of no interest. If they
are, then components at different scales have to be as-
sociated in some, often heuristic, manner. In this paper,
we present a multiscale segmentation method that yields
a hierarchically arranged tree such that the relationships
between regions at different levels of the segmentation
is explicit.

2. K-Means Clustering

Images are segmented using an iterative hierarchical
segmentation method. A vector of textural measure-
ments are associated with each pixel. As in Lakshmanan
et al. (2000), we used a common set of neighborhood
statistics (mean, variance, coefficient of variation, skew-
ness, kurtosis, contrast and homogeneity).

The images were then requantized to a fixed number
of levels using K-Means clustering. It should be empha-



sized that this fixed number of levels (“K” in the K-means
clustering) is not the number of regions in the resulting
segmentation. The number, K, is the number of levels
into which the image is requantized. The requantization
is an iterative process that makes use of K-Means clus-
tering to partition the image values into the K bins.

The measurement space (the radar reflectivity values
of the gates) was divided up into K equal intervals and
each pixel was initially assigned to the interval in which
its reflectivity value lay. A Markov assumption, that a
pixel belongs to the same interval as its neighbors, was
imposed. In each iteration, the best label for each pixel
in the image was chosen based on a cost factor that in-
corporated two measures. The first measure is the Eu-
clidean distance, d,,(k), between the texture vector at
that pixel and the cluster mean of the candidate k, given
by:
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where u? is the cluster mean of the k" cluster at the
n'h iteration and 7, the texture vector at the pixel (z,y).
The second measure is a contiguity measure, d.(k), that
measures the number of neighbors whose labels differed
from the candidate label k, and is given by:
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where S} is the label of the pixel (i, j) at the nt" iteration
and N, Is the set of 8-neighbors of the pixel (z,y). Then
the choice of the label for the pixel (z,y) in the (n + 1)
iteration, Sg;fl, is given by the label keS}(,my for which the

energy, E(k), given by:
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is minimum. We used A\ = 0.6 for all the images. The
candidates that were considered were the labels at the
nth iteration of the pixels within the 8-neighborhood of
(z,y). At the end of each iteration, the cluster attributes
(the u's) were updated based on all the pixels that were
labeled as belonging to the cluster at that time.

The requantization, then, consists of these steps: (a)
Initialize the K means somehow — we simply divided up
the measurement space into equal intervals. (b) Assign
the closest mean to each pixel. (c) Start iterating on the
clustering scheme by reassigning pixels based on the
Markov assumption. (d) Iterate until stable.

At this point, the image has been requantized, but
the quantization has taken the spatial arrangement of
pixel values into account. A region growing algorithm
is employed to build a set of connected regions, where
each region consists of 8-connected pixels that belong
to the same K-Means cluster. If a connected region is
too small, then its cluster mean (the mean of the tex-
ture vectors at each pixel in the region) is compared to
the cluster means of the adjoining regions and the small
region is merged with the closest mean. This process is
repeated until the regions are such that all cluster means
have reliable statistics. In practice, we considered a re-
gion too small if it had less that 15 contributing textural
measurements.

The result of the K-Means segmentation, region grow-
ing and region merge steps is the most detailed seg-
mentation of the image. From this point onwards, we
work exclusively in the domain of the segmented regions.
The inter-cluster distances of all adjacent clusters (or re-
gions) in the image are computed. A threshold is set
such that half the pairs fall below this threshold. An it-
erative region merging is carried out whereby if a pair
of clusters differ by less than this threshold, they are
merged. More or less than half the clusters in the im-
age may get merged because the cluster means are up-
dated at the end of each merge, resulting in a different
number of pairs which are closer than the threshold. The
region merges are stopped when none of the resulting
pairs of adjoining regions are closer than the threshold.
The segmentation result at this point is the next coarser
segmentation.

Because the results of segmentation at the second
stage are formed by region merges only, every region
in the coarse segmentation completely contains one or
more regions in the detailed segmentation. Thus, there
is a hierarchy of containment between the segmented
results at these two scales. The inter-cluster distance
threshold is relaxed steadily, set at each iteration to be
of a value such that half the cluster pairs are closer to
each other than the threshold. This process is repeated
until the segmented results are stable. The result of the
segmentation at each stage gives one level of the hierar-
chical tree.
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Figure 1. Segmenting a radar reflectivity image. (a) A
radar reflectivity image, from Fort Worth May 5, 1995.
(b) The result of segmenting the image using the merg-
ing K-Means clustering method of this paper. The most
detailed scale is shown. (c) The next higher scale of
segmentation using the method of this paper. (d) Using
a segmentation approach that doesn’t use texture, in this
case, the watershed segmentation approach of Najman
and Schmitt (1996).

3. Results and Discussion

We wish to segment the reflectivity moment of radar el-
evation scans. The data have been mapped from polar
coordinates into a Cartesian grid tangential to the earth’s
surface at the radar location and where each pixel is a
square area of one kilometer on each side. The pixel val-
ues, in dBZ, range from about —7dBZ to about 64dBZ,
with the reflectivity values for some pixels missing. Miss-
ing values and all reflectivity values less than 0dBZ were
thresholded to be 0dBZ before the segmentation pro-
cess.

A single 0.5-degree elevation scan of radar reflectiv-

ity data collected by the Weather Service Doppler Radar
(WSR-88D) at Fort Worth, TX on May 5, 1995 was used
to compare the segmentation results of the various tech-
nigues. The results are shown in Figure 1.

The major advantage of working within the space of
the segmented regions when doing a multiscale seg-
mentation is that the resulting segmented results auto-
matically form a hierarchical tree. This is extremely use-
ful in such applications as tracking — tracking of large
regions can be done robustly and the movement of more
detailed regions can be constrained to lie within the large
regions (adjusted for inter-frame movement) that contain
them.

Current work is focused on utilizing the results of this
segmentation approach in robustly tracking storms in
radar reflectivity images, as well as in satellite weather
images. This method is also being extended to three di-
mensions, to deal with the 3D volume nature of radar
reflectivity data.
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