ESTIMATION OF LIQUID WATER CONTENTS BY THE DUAL-FREQUENCY CLOUD RADAR

Toshio Wakayama *, Takahiko Fujisaka *, Kiyoyuki Hata *, Shinichiro Watanabe *, Koyuru Iwanami **, Ryohei Misumi **, Masayuki Maki ** * Mitsubishi Electric Corporation ** National Research Institute for Earth Science and Disaster Prevention

1 INTRODUCTION

The dual-frequency cloud radar, a part of Mobile Multi-parameter Radar System we have recently developed, uses a single Cassegrain antenna with 2 m diameter both for the Ka-band and the W-band subsystems. Therefore, the Ka-band and the W-band radars can observe the same direction. In order to utilize this characteristic, we plan to measure liquid water contents (LWC) of clouds by the dual-wavelength method. In this paper, we examine the performance of LWC measurements by computer simu-lations.

2 MEASUREMENTS OF LIQUID WATER CONTENTS BY THE DUAL-WAVELENGTH METHOD

Attenuation of a millimeter-wavelength radio wave by a cloud is relatively high, and therefore compensation of the attenuation is one of the major problems of millimeter-wavelength meteorological radars. Since attenuation by clouds is proportional to the LWC, and the attenuation coefficient depends on a radio frequency, the LWC can be estimated from the ratio of echo powers observed with two wavelengths [1].

3 RESULTS OF SIMULATION

Table 1 is the specification of the radar model used in the computer simulations, which is based on the actual radar system. Figure 1 shows a meteorological model used in the simulation. This model consists of 2 horizontal layers; layer 1

* Toshio Wakayama: Information Technology R&D Center, Mitsubishi Electric Corporation, 5-1-1 Ofuna, Kamakura, Kanagawa, 247-8501 Japan, e-mail: wakayama@isl.melco.co.jp is a clear-air layer and layer 2 is a cloud layer.

Figure 2 is a result of computer simulation. As shown in graph (a), LWC is 0.5 g/m³ and the height of the cloud bottom is 1km in this simulation case. Figure (b) and (c) show simulated signal to noise ratio (SNR) on a vertical section for the Ka-band radar and the Wband radar, respectively. Figure (d) is a distribution of estimated LWC, and figure (e) is a standard deviation of the estimation. From this figure, LWC is accurately estimated up to 2.2 km altitude and 1km horizontal range.

Figure 3 shows a relationship between the bottom height of clouds and accurately observable depth of the clouds. This result indicates that the observable depth of the clouds is about 1 km if the height of the cloud bottom is 3km, liquid water content is 0.5 g/m³.

4 CONCLUSION

In this paper, we examined performance of LWC measurements with the dual-frequency cloud radar we have developed by computer simulations. The actual performance of the radar system will be verified by field data in the near future.

References

Doviak, R. J. and D. S. Zrnic, 1993: Doppler Radar and Weather Observations, Second Edition, pp. 236-239, Academic Press, Inc.

	Ka-band	W-band
Frequency	35 GHz	95 GHz
Peak power	100 kW	1.5 kW
Antenna diameter	2 m (common antenna)	
Antenna gain	52 dB	58 dB
Antenna scan	0.5 rpm	
Beam width	0.4 deg.	0.2 deg.
Pulse width	0.5 micro sec.	1 micro sec.
Noise Figure	5.0 dB	8.0 dB

Table 1. Simulation parameters.

Figure 1 Outline of the simulation model.

Figure 3. Observable depth of clouds.

Estimation of Liquid Water Contents (LWC)

by Multi-band method

6

Figure 2. Simulation results of estimating liquid water contents.