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1. INTRODUCTION 

A number of different methods have been devel-
oped for numerical modeling of initial-boundary value 
problems of hydrodynamics. The most popular ones 
are: the finite differences, spectral, pseudo-spectral and 
collocation methods. The finite element methods have 
been known for over thirty years. Their theoretical dis-
cussion was presented by Zienkiewicz (1971) and 
Strang and Fix (1973). 

Cullen (1974) was the first to use the finite ele-
ments in modeling of atmospheric processes. His ex-
ample was followed by Staniforth and Daley (1977) and 
Staniforth and Mitchell (1977). In their considerations 
they mainly applied Lagrange’s approximations, which 
for any variable v can be written in the form Σviχi, 
where χi, basis functions, usually linear or low-order 
polynomials, vi – the value of v at the node i.  

On the basis of the theory of approximation Strang 
and Fix (1973) shortly described a second approach to 
the problem of solving partial differential equations using 
finite elements. They defined new finite elements 
spaces, called Hermitian spaces, and suggested that 
unknown solutions could be approximated in the form: 

∑ ψ+ϕ= ][ ' )()()()()( xtvxtvx,tv iiiih             (*) 

Ten years later Rymarz and Winnicki (1984) analyzed 
more complicated finite element approximations, which 
were written in the general form: 

∑ γ+ψ+ϕ= ][ ''' )()()()()()()( xtvxtvxtvx,tv iiiiiih  (**) 

where )( x,tvh  is a discretization of the exact solution 

),( txv ; ''' , ii vv - the first and the second derivative of the 

solution. 

2. THE FINITE ELEMENT SPACES 

We will concentrate on the finite element approxi-
mation for initial-boundary value problem: 
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where fi vector of values of sought-for functions fh at the 

node i; h - mesh spacing; '
if  - values of the first deriva-

tives of the solution f; )(),( xx ii ψϕ  - Hermitian space 

basis functions. It is important to notice that each basis 
function has the compact support and this support is 

small. It is given by a few elements of the space. These 
functions vanish at the nodes outside the element and 
take the value 1 at the node i. For (*) the assumptions 
hold piece-wise cubic functions. 

Now we can define Hermitian space )3(
hV : 
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The basis of )3(
hV  is a pair of cubic piece-wise polyno-

mials. They are of 1C  type. The space )3(
hV  is a Hilbert 

space, ),0(
~ 2

0
)3( lHVh ⊂ , endowed by the scalar product: 

∫ΩΩ = dxxvxwvw H )()(),( )(
~ 2

0
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3. PROBLEM FORMULATION FOR DIFFUSION 
EQUATION 

Let us consider the linear one-dimensional diffusion 
equation with irregular initial condition: 
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After applying the finite element method’s technique in 

the Hermitian space )3(
hV  for ),( txvu hh = (HFEM): 
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we obtain the system of implicit discrete equations: 
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where β = a2τ/h2; τ, h - time integrating and spatial 
steps; a2 – diffusion coefficient; a2 = const > 0. The 

values '  , ii uu  are usually called the nodal parameters 

of the Hermitian space )3(
hV . 

System Eqns. (6) is equivalent to the system of lin-
ear algebraic equations. We rewrite it in the form: 
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so that the vectorial variant of passage method could be 
used for solving it; where: U - vector of solutions, 

Tuu )',(=U  for (*) and Tuuu ),,( '''=U  for (**); A, B, C - 
matrices of the coefficients built for Eqn. (7), 
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for (*) and  
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for (**). It is well known that the finite element methods 
lead to the difference schemes, which are similar to the 
finite differences schemes. In the Hermitian spaces we 
obtain not only the solution, but also the values of its 
first or first and 
second deriva-
tives.  

To the ana-
lysis of the diffu-
sion process let 
us apply more 
completed finite 
element appro-
ximation, which 
includes function 
and its first and 
second deriva-
tives. This problem is graphically illustrated in Fig. 1. 
Figure 1 presents the diffusion equation (4) solutions 
with the initial condition in the Dirac's delta function 

form: 
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, . The curve 1 is the graph of the 

solution u, curve 2 its first derivative 'u , and the curve 

3 its second derivative ''u .  

4. CONCLUSION 

Applying the Hermitian idea of constructing differ-
ence schemes we can describe the irregular problems 
in a much more complete and correct manner. Consid-
ering additional nodal parameters in the approximated 
solutions furnishes us with new information about the 

analyzed process and makes possible not only accu-
rate localization of any discontinuity or irregularity of the 
initial condition, but also more accurate plotting of that 
irregularity in consecutive time levels, Winnicki (1988) 
and Winnicki and Jasinski (2000). Regardless of the 
number of nodal parameters the Hermitian method 
leads to three-point difference schemes on the supports 

)1,,1( +− iii  with additional degrees of freedom at every 
point. This feature is not true for Lagrangian schemes, 
which include 2p+1 points, p – order of polynomial; and 
their supports, for 2=p , are )2,1,,1,2( ++−− iiiii .  

The accuracy of the system (8) is the fourth order in 
space for (*) and the sixth order for (**). It can be 

proved that their order of accuracy is equal to 1+ph  (in 
(**) the basis functions are fifth order polynomials). The 
obtained schemes are unconditionally stable (they are 
always implicit ones). They are not dispersive, but they 
are lightly dissipative. The schemes can be the second 
order accurate in time if for spatial operator the Crank-
Nicholson approximation is applied. 

The results suggest that more attention should be 
given to the finite element methods in Hermitian spaces 
investigations. It seems that the nodal parameter in the 
first derivative form can be a very good dissipative 
mesh of the difference schemes for advection equation 
(Winnicki, 2000). It is still unknown the role of the sec-
ond derivative of the solution.  
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Fig. 1. Solutions of the diffusion equa tion. 


