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1. INTRODUCTION

The deployment of the United States NEXRAD

(NWS's NEXt generation RADar, the NEXRAD or WSR-

88D) network has provided weather forecasters an

important tool in the monitoring of severe weather and

for issuance of storm warnings. The current operational

radar algorithms are based on single radar and are

applied in polar coordinates.  However, most forecast

offices and regional aviation control centers monitor

weather and storms over a geographical domain that

encompasses several radar umbrellas.  Further, the life

cycle of an individual storm may be sampled by two or

more radars requiring additional radars for better

monitoring of storm characteristics and evolution.

The creation of a 3D radar mosaic would allow

users and algorithm developers the benefit to use and

develop a wide variety of products and displays that

more fully depicts the evolution and lifecycle of storms.

Examples include more physically realistic horizontal or

vertical cross-sections.  Single radar algorithms could

be expanded to utilize data from multiple radars and

other environmental data to more accurately determine

storm attributes.  Gridded radar data can also be easily

combined with information from other data sources

such as satellite data, model analyses or forecast fields

increasing its value in the overall forecast and warning

process.  Regional rainfall maps using multisensor

approaches are examples of such an application.

Gridding radar data is challenging due to 1) the

conical geometry of radar sampling and 2) the large

volume of radar data sets.  The distribution of radar

data is non-uniform in space, with high resolution in the

radial direction and low resolution in azimuthal and

elevational directions, especially at far ranges.
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Figure 1.1 shows radar data distributions on a x-z plane

in Volume Coverage Pattern (VCP) 21.  Near radar, the

centers of data bins are spaced by about 1 km, while at

far range they are spaced as much as 100 km

horizontally and 5 km vertically.  This non-uniformity

makes the choice of an interpolation scheme and

associated filter nontrivial.  Trapp and Doswell (2000)

tested nearest neighbor, a Barnes-type, and Cressman-

type interpolation schemes.  Their results show that a

nearest neighbor scheme gives the smallest root-mean-

square (RMS) errors, but the spatial scales of error

fields are non-uniform. A strong Barnes filter based on

the poorest resolution in a reflectivity field results in a

uniformly scaled error field, but significant high-

resolution information in the observations is lost.  This is

not a desirable feature for monitoring severe storms by

observation or by the use of an algorithmic procedure.

Fig. 1.1 Radar data distributions on a x-z plane in VCP 21.
The circles represent the centers of radar bins; the dashed
lines indicate the bottom of radar beams, and the dotted
lines the top of radar beams.  Note that the circles are
overlapped on the top of each other at the lower elevation
angles.

In this study, we choose an adaptive Barnes-type

scheme (Askelson et al., 2000) for interpolating radar

data onto a Cartesian grid.  This scheme is designed for

retaining high-resolution information in the original radar

observations while filtering small-scale noise.  In



comparison to a uniform Barnes scheme, the adaptive

Barnes scheme results in smaller errors in the

interpolated fields, especially in regions near radar.

Errors in analyzed reflectivity fields must be minimized

when producing scalar fields such as precipitation rates

and vertically integrated liquid (VIL).

2. CONICAL TO CARTESIAN TRANSFORMATION

The weighting function of the adaptive Barnes filter

is defined as:
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where, r i, φi, θI are range, azimuth, and elevation of the

ith grid point; rk, φk, θk are range, azimuth, and elevation

of the center of kth reflectivity observation bin in the

influence region* of the ith grid point; κr, κϕ, κθ are

Barnes smoothing factors in the radial (r-), azimuthal (ϕ-

), and elevational (θ-) directions, and w i,k is weight given

to the kth reflectivity observation at the ith grid point.

The interpolated value at the ith grid point is

calculated by:
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Here, fi
a represents the interpolated reflectivity at the ith

grid point,  fk
o is the observed reflectivity at the kth radar

bin, and “nobs” represents the number of radar bins

within the influence region of the ith grid point.

In the adaptive Barnes scheme, there is

approximately the same number of data points within

the influence region of each grid point. The algorithm is

computationally efficient since the number of data

points is small when the filter is designed to retain high-

resolution information in the raw data.  On the other

hand, a uniform Barnes scheme with large smoothing
factors is computationally expensive because the

number of data points within an influence region

becomes very large at close ranges (Fig.1.1).
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* The influence region is a volume that is centered at a grid point
and bounded by constant radial, azimuth and elevation distances
(Ri_r, R i_ , and Ri_ ) away from the grid point. Ri_r, R i_ , and Ri_

are the distances where the interpolation weight become equal or
less than a lower threshold value.

3. GAP-FILLING

There are data gaps between the higher tilts in

VCP 21 (Fig. 1.1) and VCP 11 (not shown) due to large

elevation angle spacings.  To fill in the gaps, one option

is to increase the smoothing factor κθ in the weighting

function (Eqn.[2.1]) so that the radius of influence

becomes large at higher elevations.  However, we

found that this solution results in arc-shaped

discontinuities or concentric circles in the interpolated

field when there is horizontally homogeneous echo

having strong vertical gradients (e.g., stratiform

precipitation).  Fig. 3.1 shows a vertical cross-section of

reflectivity with a melting layer between 2-4 km.  Fig.

3.2a shows a horizontal cross-section of an interpolated

reflectivity field at 3.5 km.  The high reflectivity arcs

seen northwest of the radar are associated with places

where the melting layer intercepts the center of radar

beams, while the intervening gaps correspond to

locations where the bright band intercepts vertical

scanning gaps.  For grid points in these intervening

gaps, the interpolated values are derived from

reflectivity in radar bins much higher above or much

lower below.  This height uncertainty problem has been
discussed in previous studies (Howard et al., 1997,

Maddox et al., 1999, and Brown et al., 2000).  To

alleviate this problem, we used an alternate gap-filling

scheme in which a horizontal interpolation is performed

between the gaps.  Fig. 3.2b shows the same horizontal

section after the horizontal gap-filling scheme was

employed.  The discontinuities have been effectively

removed.

Fig. 3.1 A vertical cross-section of the reflectivity observed
by KFWS at 1:30 UTC, May 6, 1995.   The cross-section
was taken along a line from “A” to “B” in Fig. 3.2a.



Fig. 3.2 Horizontal sections of the interpolated reflectivity at
3.5 km (msl) before (panel a) and after (panel b) a
horizontal gap-filling scheme was employed.

4. MOSAIC

The polar-to-Cartesian transformation is performed

for each individual radar’s volume scan.  The remapped

reflectivity fields from different radars, which are valid

within a given time window (e.g., 10 minutes), are then

mosaicked to produce one 3D reflectivity grid using a

Cressman type scheme.  The mosaic equation is:
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where fi,j
a represents the interpolated value at the i th grid

point from the jth radar, fj
m is the mosaicked reflectivity

value at the grid point, wi,j is the weight given to fi,j
a.

The weight is determined by:
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2
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Here R i is the influence radius of radar, which is set to

300 km in our scheme, and di,j is the distance between

the jth radar and the ith grid point.

Fig. 4.1 shows examples of single radar composite

reflectivities from KFWS, KGRK and KTLX, and a

mosaicked composite reflectivity.  The data are from the

Ft. Worth, TX, USA hailstorm case that occurred on

May 5-6, 1995.  The mosaicked reflectivity provides a

more comprehensive depiction of the storm structures

and could be more useful for making weather-related

decisions than single radar products.

5. SUMMARY

 A multiple radar reflectivity mosaic scheme has

been developed, tested, and employed in real-time

operations.  An adaptive, Barnes-type filter is used to

transform radar reflectivity from their native conical

coordinates to Cartesian grids.  A Cressman-type

scheme is then used for mosaicking multiple radar

fields.  The advantages of the scheme include its

computational efficiency and the retention of high-

resolution meteorological information. The multiple

radar reflectivity mosaic has been tested in several

applications including a real-time regional reflectivity

display, an aviation control display and a radar

climatological study.

Fig. 4.1 Composite reflectivities from KFWS, KTLX, KGRK
radars and from a 3D reflectivity mosaic using 7 radars
(the aforementioned 3 plus KAMA, KLBB and KEMX).
The images were valid at 2330 UTC on May 5, 1995.
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