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1.  INTRODUCTION 
 
 The current generation of mobile platforms (e.g., 
Rasmussen et al. 1994) for observing convective storms and 
other small-scale phenomena provides detailed information on 
the wind field within the feature of interest, but it is difficult to 
obtain more than a few isolated measurements of pressure and 
temperature.  The lack of thermodynamic data presents a 
challenge to the scientist who wishes to validate hypotheses of 
storm dynamics. 

Traditional methods of thermodynamic retrieval (Gal-
Chen 1978; Hane et al. 1981; Roux 1985) estimate the 
unknown fields by a direct solution of the equations of motion 
(and, in the case of the Roux method, the thermodynamic 
equation).  Unfortunately, traditional retrievals yield 
unsatisfactory results when there are significant errors in the 
observations and/or when the temporal sampling is poor.  
When the time between observations is long relative to the 
characteristic time scale for evolution of the observed 
phenomenon, it is difficult to estimate the local time 
derivatives of velocity that are required in the retrieval. 

Some of the limitations of traditional retrieval methods 
are avoided in data assimilation approaches (e.g., Sun et al. 
1991; Sun and Crook 1997) for storm-scale retrievals.  Sun et 
al. (1991) used a Boussinesq numerical model and its adjoint 
to produce dynamically consistent fields that agreed, in a least 
squares sense, with simulated radar observations of dry 
convection. 

This paper is a description of a new and simple method, 
which also uses a numerical model, for retrieving temperature 
from observations of velocity.  The advantage of this 
technique over traditional methods is that one may account for 
evolution that is nonlinear in time. 
 
2.  TWO-DIMENSIONAL MODEL 
 

We are conducting experiments with a two-dimensional, 
dry, anelastic, frictionless, version of the COllaborative Model 
for Multiscale Atmospheric Simulation (COMMAS) (Wicker 
and Wilhelmson 1995).  The model equations are as follows: 
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where θ denotes the total potential temperature, overbars 
indicate base state quantities, buoyancy is defined as 

( )1/ −θθ= gB , and the other variables have their usual 
definitions.  For the integration of the model equations, we use 
third-order Runge-Kutta time integration and fifth-order 
spatial differencing (Wicker and Skamarock 2001).  Pressure 
is determined at each time step with a diagnostic equation 
obtained by taking the divergence of the equations of motion 
and incorporating anelastic mass continuity [ ( ) 0=ρ⋅∇ u

r
]. 

 The numerical model is used both to produce simulated 
radar observations and to accomplish the retrieval of 
temperature.  The retrieval method also requires a linearized 
version of the model: 
 

x
c

z
uw

x
uu

z
uw

x
uu

t
u

p ∂
π′∂θ−

∂
∂′−

∂
∂′−

∂
′∂−

∂
′∂−=

∂
′∂ ~~~~   (4) 

 

z
cg

z
ww

x
wu

z
ww

x
wu

t
w

p ∂
π′∂θ−







θ
θ′

+
∂
∂′−

∂
∂′−

∂
′∂−

∂
′∂−=

∂
′∂ ~~~~  (5) 

 

z
w

x
u

z
w

x
u

t ∂
θ∂′−

∂
θ∂′−

∂
θ′∂−

∂
θ′∂−=

∂
θ′∂

~~
~~     (6) 

 

where θ
~
 and ,~,~ wu  are the (total) model variables in the 

forward simulation, and θ′′′  and ,,wu  are perturbations that 
are defined below.  The utility of tangent linear models in data 
assimilation problems has been investigated previously by 
Wang et al. (1997), Pu et al. (1997), and Kalnay et al. (2000).  
The proposed technique here also involves integration of a 
linear model back in time. 
 The control simulation is of a cold bubble (minimum 
temperature perturbation of �16 K) descending and then 
spreading out at the surface in a neutrally stratified 
environment (Fig. 1).  The initial velocity is zero.  The θ field 
evolves rapidly as the outflow reaches the ground and spreads 
laterally (Figs. 1b and 1c).  The magnitudes of u and w in the 
simulation (not shown) are as high as 30 m s-1 and 20 m s-1, 
respectively, at 240 s.  The rapid evolution of the flow 
presents a challenging test for retrieval methods. 
   
3. RETRIEVAL EXPERIMENTS 
 

The problem we pose for the retrieval experiments is as 
follows:  Suppose we have complete, perfect sets of 
observations of the u component of motion at two times, e.g., 
at t1=240 s and t2=300 s.  The goal is to determine θ at t1 from 
the observations of wind.  Since the problem is two-
dimensional, the observations of u together with the continuity 
equation are used to synthesize the complete wind field.  The 
problem is analogous to a three-dimensional case when dual-
Doppler observations are available. 
 We use the following algorithm to retrieve θ: 
 
1. Initialize the model at t1 with a first guess of θ=θ . 



2. Run the model forward to t2, saving θ
~
 and ,~,~ wu  at each 

time step for later use during step 4. 
3. Define the forecast errors ( ) ( )22

~ tutuu ob −=′  and 
( ) ( )22

~ twtww ob −=′ .  Let 0=θ′ . 
4. Integrate the linear model (4)-(6) back to t1, to obtain 

( )1tu′  and ( )1tw′ . 
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errors in the previous estimates of the time derivatives of 
velocity at t1. 
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7. Initialize the model again, but with ( ) θ′+θ=θ 1
~ t .  If the 

solution has not converged, return to step 2 and repeat the 
procedure. 

 
This iterative technique provides a method for using errors in 
the forecast velocity at the final time to modify the θ field at 
the initial time.  For the experiments, we determine uob and wob 
at both t1 and t2 with a variational method in which continuity 
is satisfied exactly and the observations of u are satisfied in a 
least squares sense (Shapiro and Mewes 1999).  For other 
cases, it may be desirable to successively refine estimates of 
the wind field with other variational techniques that include 
additional constraints. 
 
4.  RESULTS 
 
 For the test with observations of u at 240 and 300 s, the 
retrieved perturbation temperature field after the first iteration 
(Fig. 2a) has already begun to resemble the actual temperature 
field (Fig. 1b).  The mean absolute error in θ within the 
subdomain that is shown in the figures is 0.54 K after the first 
iteration.  For comparison, we show the results of a traditional 
retrieval (Gal-Chen 1978; Hane et al. 1981) applied at the 
same time (Fig. 2d).  Since significant nonlinear evolution in 
the cold pool occurs between 240 and 300 s (Figs. 1b and 1c), 
the finite-difference approximation of the velocity time 
derivatives over the 60-s interval introduces significant error 
into the retrieval.  The mean absolute error in θ for the 
traditional method is 2.01 K. 
 At later stages in the new iterative method, the retrieved 
θ field approaches that in the control simulation (Figs. 1b, 2b, 
and 2c).  By iteration 25, the mean absolute error in θ is less 
than 0.1 K. 
 
5.  FUTURE WORK 
 
 The experiment just described involves a restricted set 
of circumstances � i.e., a perfect model and perfect 
observations.  The emphasis was on retrieving θ when there is 
significant evolution in the fields between the times of the 
velocity observations.  We are currently working on applying 
the retrieval in more complicated scenarios involving error in 

the observations, missing observations, and the presence of 
moisture. 
 
ACKNOWLEDGMENTS 
 
This work was supported under NSF grant ATM-000412.  
Additional support (for A. Shapiro) was provided by the 
Coastal Meteorology Research Program (CMRP), under grant 
N00014-96-1-1112, from the Office of Naval Research 
(ONR).  The authors thank Andrew Crook and Jenny Sun for 
their advice and comments on this study and other related 
work. 
 
REFERENCES 
 
Gal-Chen, T., 1978:  A method for the initialization of the 

anelastic equations:  Implications for matching models 
with observations.  Mon. Wea. Rev., 106, 587-606. 

Hane, C. E., R. B. Wilhelmson, and T. Gal-Chen, 1981:   
Retrieval of thermodynamic variables within deep 
convective clouds:  Experiments in three dimensions.  
Mon. Wea. Rev., 109, 564-576. 

Kalnay, E., S. K. Park, Z.-X. Pu, and J. Gao, 2000:  
Application of the quasi-inverse method to data 
assimilation.  Mon. Wea. Rev., 128, 864-875. 

Pu, Z.-X., E. Kalnay, J. Sela, and I. Szunyogh, 1997:  
Sensitivity of forecast errors to initial conditions with a 
quasi-inverse linear model.  Mon. Wea. Rev., 125, 2479-
2503. 

Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. 
Doswell, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 
1994:  Verification of the origins of rotation in 
tornadoes experiment:  VORTEX.  Bull. Amer. Meteor. 
Soc., 75, 995-1006. 

Roux, F., 1985:  Retrieval of thermodynamic fields from 
multiple-Doppler radar data using the equations of 
motion and the thermodynamic equation.  Mon. Wea. 
Rev., 113, 2142-2157. 

Shapiro, A., and J. J. Mewes, 1999:  New formulations of  
dual-Doppler wind analysis.  J. Atmos. Oceanic 
Technol., 16, 782-792. 

Sun, J., D. W. Flicker, and D. K. Lilly, 1991:  Recovery of 
three-dimensional wind and temperature fields from 
simulated single-Doppler radar data.  J. Atmos. Sci., 48, 
876-890. 

Sun, J., and N. A. Crook, 1997:  Dynamical and microphysical 
retrieval from Doppler radar observations using a cloud 
model and its adjoint.  Part I:  Model development and 
simulated data experiments. J. Atmos. Sci., 54, 1642-
1661. 

Wang, Z., K. K. Droegemeier, L. White, and I. M. Navon,  
1997:  Application of a new adjoint Newton algorithm 
to the 3D ARPS storm-scale model using simulated 
data.  Mon. Wea. Rev., 125, 2460-2478. 

Wicker, L. J., and W. C. Skamarock, 2001:  Time splitting  
methods for elastic models using forward time schemes.  
Submitted to Mon. Wea. Rev. 

Wicker, L. J., and R. B. Wilhelmson, 1995:  Simulation and  
analysis of tornado development and decay within a 
three-dimensional supercell thunderstorm.  J. Atmos. 
Sci., 52, 2675-2703. 



 
a)  T=0 s           b)  T=240 s 
 

 
c)  T=300 s 

 
Figure 1.  Perturbation temperature (contours at intervals of 2 K) in the control simulation.  The domain for the simulation is 36 
km wide and 6.4 km tall; only a portion of the domain is shown.  The grid spacing is 200 m in both the horizontal and vertical. 
The model time step is 2.0 s. 
 
 
 
 
 
 

 
a)  New method, after iteration 1 (MAE=0.54 K)    b)  New method, after iteration 5 (MAE=0.25 K) 
 

 
c)  New method, after iteration 25 (MAE=0.09K)    d)  Traditional method (Gal-Chen 1978; Hane et al. 1981) 

     (MAE=2.01 K) 
 
Figure 2.  Retrieved perturbation temperature (contours at intervals of 2 K) at 240 s.  The mean absolute error (MAE) in 
temperature within the subdomain is indicated in parentheses. 
 


