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THE ROLE OF THE MOMENTUM DIVERGENCE EQUATION ELLIPTICITY

IN THE NUMERICAL SOLUTIONS

Ireneusz A. Winnicki’, Krzysztof Kroszczynski’
Military University of Technology (MUT), Warsaw, Poland

1. INTRODUCTION

This paper can be treated as a short lecture a-
dressed to the beginners at applied meteorology, espe-
cially at numerical weather prediction. Its aim is to dis-
cuss the influence of the ellipticity of the momentum
divergence equation (so-called balance equation) on the
solution of non-divergent equation d the solenoidal or
geostrophic models in the barotropic approaches. The
equation considered is a nonlinear differential equation
of Monge-Ampere type (MA) used for streamfunction y

field determining if the geopotential field is known.
Transforming the governing equations and assuming
that the divergence of the wind field is equal to zero it
can be obtained, divW =0. The nonlinear balance
equation is a part of the general system equations de-
scribing quasi-solenoidal or quasi-geostrophic models.

Making use of the real aerological measurement
data furnished by the international GRID network the
Monge-Ampere equation has been solved numerically
together with the solenoidal model in barotropic -
proximation.

2. PROBLEM FORMULATION

The simplest barotropic model is a solenoidal mo-
del, in which the velocity vector can be introduced as a
hypothetical solenoidal wind described by a streamfunc-
tion y and a geostrophic model, where the geo-

strophic wind relations define the velocity field. In both

cases the most accurate results are obtained by per-

forming the analysis on the non-divergent layer of the

atmosphere (divV =0) at the height between 3 and 5

km. The models just mentioned are in meteorology

known as non-divergent models.

The numerical weather forecasting process based
upon the non-divergent models in barotropic ap-
proaches can be divided into three following stages:

1. computing the horizontal components of the wind
velocity (the geostrophic model) or the streamfunc-
tion field (the solenoidal model) treating the geopo-
tential as known data - solution of the balance
equation;

2. predicting of the geopotential (geostrophic mo-del)
or the streamfunction (the solenoidal model) for 12
hours, for instance, and

3. solving the balance equation for geopotential. In the
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geostrophic model, on the basis of the prognostic

geopotential field, we obtain a prognostic wind field.

In the solenoidal model, on the basis of prognostic

streamfunction we obtain a prognostic geopotential

field.

For the realization of the first stage of the weather
forecasting process it is necessary to analyze a non-

linear balance equation for streamfunction Yy, a particu-

lar case of equation of Monge-Ampere type: 1)
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f — Coriolis parameter. The MA equation is a second
order nonlinear partial differential equation, written in
general form:

r-s>=ax +2bxs+cxt +J,
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Its coefficients a, b, ¢ and the term J depend on X, Y,
the sought-for function and its first derivatives

Ty Ty 3)

The basic problem is the geopotential field geometry
influence on the physically acceptable solution of MA
equation. The criterion for classifying Egn. (2) mainly

depends on N?F and has the form:

D=J+ac- b (4)
The MA equation is classified as elliptic if D>0. In the
opposite case it is hyperbolic, and if D=0 this equation

is parabolic. The solution of the Egn. (2) is physically
acceptable only when it is of elliptic type. Leading Egn.

(1) into Eqgn. (2) form we obtain: 5)
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Where m? - the map scale factor in the polar stereo-
graphic projection. The term can be estimated as it
= 2
follows: MEY I Iy IO . ™ Gor . The type of the
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differential Eqn. (5) now can be determined by checking
the expression sign:
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The Egn. (5) is a diagnostic equation. Because of
the nonlinearity, an iterative solution procedure must be
used. A number of iterative methods may be applied to
solve this problem (Gauss elimination, Fourier series
expansion, relaxation). For example, Paegle and



Tomlinson (1975) described the Fourier transform and
Gauss elimination algorithms applied to the balance
equation in a spherical coordinate system. The same
equation Gent et al. (1993) solved in cylindrical coordi-
nates system. Winnicki (1995) presented the algorithm
of solution of this problem written in the polar stereo-
graphic projection form.

The main point is that if the iterative methods lead to
convergent sequences of solutions, the equation to be
solved satisfies the general ellipticity condition of the MA
equation. That condition depends mostly on the geome-
try of the geopotential field. It means the curvature of
this field must be elliptic. We rewrite the ellipticity crite-
rion (6) in the discrete form:
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where d is horizontal grid size.

We have to analyze the equations of MA type not
only at the numerical solution of balance equation. This
problem appears also in frontogenesis description and
omega equation in the terms of the Q-vector.

Input geopotential field - GRID
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Fig. 1. The geopotential field. The stars indicate the
point the ellipticity condition is not satisfied.
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Fig. 2. The elliptic geopotential field.
3. AN EXAMPLE

Let us consider a geopotential field taken from the
international GRID data (Fig. 1). The middle of the Fig-
ure 1 corresponds with the latitude of 10°N (the equator
zone). The number of non-elliptic nodes is equal to 235.
The input field after modification is presented in Fig. 2.

Figure 3 graphically presents the solution of the
momentum divergence equation (5) (MA equation) after
geopotential field modification. For the Eqgn. (5) solving
the explicit finite differences method was applied.

Solution of the Monge -Ampere equation

T T T T T T T

408 416

30

|

424
424

25| 432

440
20(45 118

464 456
15 464

472
10r
480
47!

\

:

2 4 6 8 10 12

i
IS

16
Fig. 3. The solution of the Monge-Ampere equation.

On the basis of the ellipticity criterion (7) we see that
the condition strongly depends on the latitude. The
same geopotential field situated on 25°N indicates 155
non-elliptic nodes, on 45°N — 61 nodes, and on 60°N — 5
nodes. On the higher latitudes the geopotential fields
are usually elliptic and therefore they do not require any
modification. As an effect of the Eqn. (5) conversion we
obtained the Poisson equation that was solved using
the FFT techniqgue (NDP FORTRAN compiler + IMSL
library).

4. CONCLUSION

By analyzing geopotential fields we can determine
regions, which can influence on the ellipticity of those
fields, and then the ellipticity of the balance equation.
They are mainly regions of high pressure (anticyclones
and ridges) situated in the low latitudes. In the Fig. 2 we
can see that the ridge distinctly weakens — an effect of

using numerical subroutine. The value of f2 in the low
latitudes is positive and nearly equal to zero. It means
the ellipticity condition f?2/m? +2>N2F >0 may not be
satisfied because of the negative values of the Lapla-
cian of the geopotential, N?F , over the high-pressure
area. It is the main cause of the lack or slow conver-
gence of the iteration process of balance equation solv-
ing.
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