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1. INTRODUCTION 

This paper can be treated as a short lecture ad-
dressed to the beginners at applied meteorology, espe-
cially at numerical weather prediction. Its aim is to dis-
cuss the influence of the ellipticity of the momentum 
divergence equation (so-called balance equation) on the 
solution of non-divergent equation of the solenoidal or 
geostrophic models in the barotropic approaches. The 
equation considered is a nonlinear differential equation 
of Monge-Ampere type (MA) used for streamfunction ψ  

field determining if the geopotential field is known. 
Transforming the governing equations and assuming 
that the divergence of the wind field is equal to zero it 
can be obtained, 0=Vdiv . The nonlinear balance 
equation is a part of the general system equations de-
scribing quasi-solenoidal or quasi-geostrophic models. 

Making use of the real aerological measurement 
data furnished by the international GRID network the 
Monge-Ampere equation has been solved numerically 
together with the solenoidal model in barotropic ap-
proximation.  

2. PROBLEM FORMULATION 

The simplest barotropic model is a solenoidal mo-
del, in which the velocity vector can be introduced as a 
hypothetical solenoidal wind described by a streamfunc-
tion ψ  and a geostrophic model, where the geo-

strophic wind relations define the velocity field. In both 
cases the most accurate results are obtained by per-
forming the analysis on the non-divergent layer of the 
atmosphere ( 0=Vdiv ) at the height between 3 and 5 
km. The models just mentioned are in meteorology 
known as non-divergent models.  

The numerical weather forecasting process based 
upon the non-divergent models in barotropic ap-
proaches can be divided into three following stages: 
1. computing the horizontal components of the wind 

velocity (the geostrophic model) or the streamfunc-
tion field (the solenoidal model) treating the geopo-
tential as known data - solution of the balance 
equation; 

2. predicting of the geopotential (geostrophic mo-del) 
or the streamfunction (the solenoidal model) for 12 
hours, for instance, and 

3. solving the balance equation for geopotential. In the 

geostrophic model, on the basis of the prognostic 
geopotential field, we obtain a prognostic wind field. 
In the solenoidal model, on the basis of prognostic 
streamfunction we obtain a prognostic geopotential 
field. 

For the realization of the first stage of the weather 
forecasting process it is necessary to analyze a non-
linear balance equation for streamfunction ψ, a particu-
lar case of equation of Monge-Ampere type:               (1) 
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f – Coriolis parameter. The MA equation is a second 
order nonlinear partial differential equation, written in 
general form: 
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Its coefficients a, b, c and the term ϑ  depend on x, y, 
the sought-for function and its first derivatives 
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The basic problem is the geopotential field geometry 
influence on the physically acceptable solution of MA 
equation. The criterion for classifying Eqn. (2) mainly 
depends on Φ∇ 2  and has the form: 

2bac −+ϑ=∆                           (4) 
The MA equation is classified as elliptic if 0>∆ . In the 
opposite case it is hyperbolic, and if 0=∆  this equation 
is parabolic. The solution of the Eqn. (2) is physically 
acceptable only when it is of elliptic type. Leading Eqn. 
(1) into Eqn. (2) form we obtain:                                  (5) 









∂
∂

⋅
∂
∂ψ

+
∂
∂

⋅
∂
∂ψ

−Φ∇=ϑ=−==

ϑ+
∂∂
ψ∂

+
∂∂
ψ∂

+
∂

ψ∂
=









∂∂
ψ∂

−
∂

ψ∂
⋅

∂
ψ∂

y

f

yx

f

x

mm
b

fm
ca

yx
c

yx
b

x
a

yx
m

yx
m

22
;0;

2

2

2
22

22

2

222
4

2

2

2

2
4

 

Where 2m  - the map scale factor in the polar stereo-
graphic projection. The term can be estimated as it 

follows: Φ∇<<

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differential Eqn. (5) now can be determined by checking 
the expression sign: 
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The Eqn. (5) is a diagnostic equation. Because of 
the nonlinearity, an iterative solution procedure must be 
used. A number of iterative methods may be applied to 
solve this problem (Gauss elimination, Fourier series 
expansion, relaxation). For example, Paegle and 

∗ Corresponding authors address: Prof. Ireneusz Winnicki, 
Ph.D.; Krzysztof Kroszczynski, Ph.D.: Mil. Univ. of Techn., 
Dept. of Civil Engineering, Chemistry and Applied Physics, 
Institute of Meteorology, 00-908 Warsaw, Poland, ul Kaliski 2, 
+48 22 6839475, irekwin@ack.wat.waw.pl 
This paper is sponsored by the Committee for Scientific Re-
search, Warsaw, Poland; grant No 0 T00A 004 17.  



Tomlinson (1975) described the Fourier transform and 
Gauss elimination algorithms applied to the balance 
equation in a spherical coordinate system. The same 
equation Gent et al. (1993) solved in cylindrical coordi-
nates system. Winnicki (1995) presented the algorithm 
of solution of this problem written in the polar stereo-
graphic projection form. 

The main point is that if the iterative methods lead to 
convergent sequences of solutions, the equation to be 
solved satisfies the general ellipticity condition of the MA 
equation. That condition depends mostly on the geome-
try of the geopotential field. It means the curvature of 
this field must be elliptic. We rewrite the ellipticity crite-
rion (6) in the discrete form: 
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where d  is horizontal grid size.  
We have to analyze the equations of MA type not 

only at the numerical solution of balance equation. This 
problem appears also in frontogenesis description and 
omega equation in the terms of the Q-vector.  
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Fig. 1. The geopotential field. The stars indicate the 
point the ellipticity condition is not satisfied.  
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Fig. 2. The elliptic geopotential field.  

3. AN EXAMPLE 

Let us consider a geopotential field taken from the 
international GRID data (Fig. 1). The middle of the Fig-
ure 1 corresponds with the latitude of 10oN (the equator 
zone). The number of non-elliptic nodes is equal to 235. 
The input field after modification is presented in Fig. 2.  

Figure 3 graphically presents the solution of the 
momentum divergence equation (5) (MA equation) after 
geopotential field modification. For the Eqn. (5) solving 
the explicit finite differences method was applied.  

Fig. 3. The solution of the Monge-Ampere equation. 
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Fig. 3. The solution of the Monge-Ampere equation. 

 
On the basis of the ellipticity criterion (7) we see that 

the condition strongly depends on the latitude. The 
same geopotential field situated on 25oN indicates 155 
non-elliptic nodes, on 45oN – 61 nodes, and on 60oN – 5 
nodes. On the higher latitudes the geopotential fields 
are usually elliptic and therefore they do not require any 
modification. As an effect of the Eqn. (5) conversion we 
obtained the Poisson equation that was solved using 
the FFT technique (NDP FORTRAN compiler + IMSL 
library). 

4. CONCLUSION 

By analyzing geopotential fields we can determine 
regions, which can influence on the ellipticity of those 
fields, and then the ellipticity of the balance equation. 
They are mainly regions of high pressure (anticyclones 
and ridges) situated in the low latitudes. In the Fig. 2 we 
can see that the ridge distinctly weakens – an effect of 
using numerical subroutine. The value of 2f  in the low 
latitudes is positive and nearly equal to zero. It means 
the ellipticity condition 02/ 222 >Φ∇⋅+mf  may not be 
satisfied because of the negative values of the Lapla-
cian of the geopotential, Φ∇ 2 , over the high-pressure 
area. It is the main cause of the lack or slow conver-
gence of the iteration process of balance equation solv-
ing. 
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